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What do we see in Germany data? & | RWTH
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B Observations (Germany) are affected by multiple, heterogeneous interventions
- Hard / weak lockdowns
— Local / country-wide measures
- NPI / vaccination | | _ infection dynamics Germany
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Covid19 ICU Simulator « | WIH
- mission
B The Covid19 ICU load Simulator (DIVI-Prognosemodell)

has been developed to

1. Identify upcoming risks to exceed German ICU capacities for
Covid19 treatment

1. In time to initialise NPI's appropriate to avoid critical situations
2. Predict setpoints to be achieved by NPI’s

2. Evaluate scenarios combining spreading dynamics,
vaccination and mutants with respect to risk for critical
situations for ICU capacities

3. Monitoring of infection/ hospitalization data for rapid
identification of trend switches

4. learning efficiency of NPI's in specific spreading scenarios from
model-based retrospective analysis

Joint Research Center for Computational Biomedicine



Covid19 ICU Simulator & | RWTH

- technical todo‘s
B Technical specifications:

— Simulation of daily time course of ICU loads

» on Germany / federal state level
» Multiple scenarios representing the impact of
— Spreading dynamics within NPI setpoints
— Mutants
— Vaccination strategies
— Saisonal effects

on ICU load

» >4 weeks prognosis horizon within scenarios with +-10%
confidence

» Uncertainty quantification

- Model assisted monitoring of infection dynamics wrt phase
transitions

Joint Research Center for Comp iona



Covid19 ICU Simulator & | RWTH
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- mechanisms to be simulated

B Risk for severe course of disease towards admission to ICU
strongly depends on age

B Infection dynamics depends of
» Social contact network (SCN)
» NPI's affecting SCN topology
» NPI's affecting infection rates on contacts (e.g. masks)
» Non-stochastic

B Vaccination affects both spreading and risk for severe course of
disease
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- challenges: data

B Data sources

- Infection dynamics: RKI Dashboard data (age-group stratified)
» Time lag due to reporting delays
» Very high daily variability due to reporting, almost periodic

— Vaccination rates, age stratified

= ICU loads: DIVI Intensivregister
» Daily reporting with low noise level
» age-related information
» |CU admission rates

- Publications....



Modelling hospital load:
DIVI Covid19 ICU Simulator

= conceptual design
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ICU module =9 [CU,,.q(t+1)
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Covid19 ICU Simulator & | RWTH
- ICU mOdUI Joint Research Center for Comp ional Bi sy

B |ICU modul computes the time course of ICU loads
— by means of convolution of the age-stratified time courses of infection
rates x(t) with

» risk profile for severe course of disease

» age stratified distribution of length of stay in ICU
— both assessed from independent data from sentinel hospitals

» time delay ICU admission vs. infection

» quantified risk of ICU admission
— derived from x(t) and ICU load data

B |CU modul structure:
> [CUpaqa(t) = X, [, B(t —t',0) * x;(t")dt’
> B(t—t',i) = R() * [ S(tgam — t") * B'(tyos, 1)dt’

B Special features:
— Robustness: convolution is compact mapping
— Holder inequality guarantees upper bounds & error bounds



Covid19 ICU Simulator & |RWITH
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= scenario module: mean field models — SEIR models

B Mean field models decompose the population into compartments

- Within each compartment, contacts between individuals are assumed tight and
homogeneous

- Between compartments, contacts between individuals are assumed sparse and
homogeneous

- Population within each compartment is characterized by specific features resulting in
specific dynamic parameters

- Within each compartment k, infection status is characterized by the state variables
» Si: number of susceptible individuals in compartment k
» Ex: number of exposed, but not infectous individuals in compartment k
» |,: number of exposed and infectous individuals in compartment k
» Ry: number of recovered (removed) individuals in compartment k



Covid19 ICU Simulator & | RWITH
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= most used: mean field models — SEIR models

B Dynamics in mean — field models is quantified by ODE system:

Ex = YuiTkkr Sklir — K Eg

I, = kK E;, — Al

Sk = — YurTirr Sicler That's what RKI reports as incidence
Rk = Akl

B Why are mean-field SEIR-models popular?
- With increasing #compartments, SEIR-models approximate network-based models
—> Easy to set up, established numerics
- # of parameters to be fit can be limited



Covid19 ICU Simulator ‘%
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B 2nd wave monitoring
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Covid19 ICU Simulator

- assessment of scenarios for 3rd wave
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Model fit to reality:

Mean field models suggest exponential

dynamics - is that right?
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A network-based explanation of why most COVID-19

infection curves are linear

Stefan Thurner®®<', Peter Klimek®®®, and Rudolf Hanel*®¢:

2Section for Science of Complex Systems, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, A-1090 Vienna,
Austria; bComplexity Science Hub Vienna, A-1080 Vienna, Austria; and “Santa Fe Institute, Santa Fe, NM 85701

Edited by Nils C. Stenseth, University of Oslo, Oslo, Norway, and approved July 23, 2020 (received for review May 22, 2020)
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Fig. 1. Cumulative numbers of positively tested cases normalized to the
last day (8 May 2020). Countries, even though many followed radically dif-
ferent strategies in response to the pandemic, seem to belong to one of
three groups: (A) countries with a remarkably extended linear increase of
the number of positively tested cases, including the United States,
the United Kingdom, and Sweden, and (B) countries with an extended linear
increase that tends to level off and enter aregime with asmaller slope. B, Inset
shows an extended regime after the peak (cases per population size).
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Fig. 2. Schematic demonstration of the model. Nodes are connected in a Poissonian small-world network. Locally close neighbors resemble the family
contacts, and long links to different regions represent contacts to others, such as people at work. (A) Initially, a subset of nodes is infected (blue), and most
are susceptible (green). (B) At every timestep, infected nodes spread the disease to any of their neighbors with probability r. After d days infected nodes
turn into “recovered” and no longer spread the disease. (C) The dynamics end when no more nodes can be infected and all are recovered. (D) Infection
curve P(t) (blue dots) for the model on a dense Poissonian small-world network, D = 8. The daily cases (red) first increase and then decrease. For comparison,
we show the recovered cases, R(t), of the corresponding SIR model with = 1/d, and 8 =rD/N (green). The mean-field conditions are obviously justified
to a large extent. (E) Situation for the same parameters except for a lower average degree, D = 3. The infection curve now increases almost linearly; daily
increases are nearly constant for a long time. The dynamics reach a halt at about 17% infected. The discrepancy to the SIR model (green) is now obvious.



Towards a hybrid modelling framework for pandemic

spreading dynamics - what do we see in Germany data?
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B Analysis of 2nd wave throughout Germany reveals convolution of exponential
and linear growth dynamics affecting efficiency of lockdown measures

‘The Lancet Regional Health - Europe 6(2021) 100151

Contents lists available at ScienceDirect

2 The Lancet Regional Health - Europe
)
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ELSEVIER journal homepage: www.elsevier.com/lanepe

Research paper

Different spreading dynamics throughout Germany during the second
wave of the COVID-19 pandemic: a time series study based on national
surveillance data

Andreas Schuppert®*!, Katja Polotzek™', Jochen Schmitt®, Reinhard Busse®, Jens Karschau®’,

Christian Karagiannidis-*!
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Towards a framework for pandemic spreading dynamics - . RWTH

what do we see in Germany data? A
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B SEIR-models represent dynamics in terms of “homogeneous” compartments
- How to define a compartment?

B Data: daily infection incidences
- 16 federals states (+ Germany overall)
- 5 age groups
- 85-dimensional state vector x(t) ¢ R® representing the dynamics
» crosstalk-matrix r has 3570 elements to be estimated from data

B How about the dimensionality of the dynamics?



Towards a framework for pandemic spreading dynamics - . RWTH

what do we see in Germany data? A
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B Correlation pattern of state-age stratified incidences reveals existence of few
modes of spreading dynamics across Germany: r(t,t’) = corr(x(t),x(t"))
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(Manuscript in preparation)
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Towards a framework for pandemic spreading dynamics’ &7 | RA\NTH

— Summary .
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B Dimensionality of compartimentalisation of mean field models can be
significantly reduced by integration of apparent coherent dynamic spreading
modes

B Fluctuation analysis around coherent spreading dynamics may reveal
insight into driving mechanisms of initialisation of infection waves

B Adequate modelling of pandemic spreading needs a network-based
dynamic approach, where the network topology has to be identified from

data (?)
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