Interpolating sparse polynomials

Dima Grigoriev (CNRS)

To the memory of Andreas Weber

14/03/2022, Bonn

Let $f = \sum_{0 \le i \le d} a_i X^i$ be a polynomial of degree d. Let y_0, \dots, y_d be pairwise distinct.

Interpolation: how to restore f from values $f(y_0), \ldots, f(y_d)$?

So, we always assume that f is given by a black-box allowing to calculate f at a given point.

$$f = \sum_{0 \le j \le d} f(y_j) \cdot \frac{(X - y_0) \cdots (X - y_{j-1})(X - y_{j+1}) \cdots (X - y_d)}{(y_j - y_0) \cdots (y_j - y_{j-1})(y_j - y_{j+1}) \cdots (y_j - y_d)}.$$

Let $f = \sum_{0 \le i \le d} a_i X^i$ be a polynomial of degree d. Let y_0, \dots, y_d be pairwise distinct.

Interpolation: how to restore f from values $f(y_0), \ldots, f(y_d)$?

So, we always assume that f is given by a black-box allowing to calculate f at a given point.

$$f = \sum_{0 \le j \le d} f(y_j) \cdot \frac{(X - y_0) \cdots (X - y_{j-1})(X - y_{j+1}) \cdots (X - y_d)}{(y_j - y_0) \cdots (y_j - y_{j-1})(y_j - y_{j+1}) \cdots (y_j - y_d)}.$$

Let $f = \sum_{0 \le i \le d} a_i X^i$ be a polynomial of degree d. Let y_0, \dots, y_d be pairwise distinct.

Interpolation: how to restore f from values $f(y_0), \ldots, f(y_d)$?

So, we always assume that f is given by a black-box allowing to calculate f at a given point.

$$f = \sum_{0 \le j \le d} f(y_j) \cdot \frac{(X - y_0) \cdots (X - y_{j-1})(X - y_{j+1}) \cdots (X - y_d)}{(y_j - y_0) \cdots (y_j - y_{j-1})(y_j - y_{j+1}) \cdots (y_j - y_d)}.$$

Let $f = \sum_{0 \le i \le d} a_i X^i$ be a polynomial of degree d. Let y_0, \dots, y_d be pairwise distinct.

Interpolation: how to restore f from values $f(y_0), \ldots, f(y_d)$?

So, we always assume that f is given by a black-box allowing to calculate f at a given point.

$$f = \sum_{0 \le j \le d} f(y_j) \cdot \frac{(X - y_0) \cdots (X - y_{j-1})(X - y_{j+1}) \cdots (X - y_d)}{(y_j - y_0) \cdots (y_j - y_{j-1})(y_j - y_{j+1}) \cdots (y_j - y_d)}.$$

Proof. The values of two polynomials both of degrees d in the left-hand and right-hand sides are equal at d+1 points y_0, \ldots, y_d , therefore, these two polynomials coincide.

Let $f = \sum_{0 \le i \le d} a_i X^i$ be a polynomial of degree d. Let y_0, \dots, y_d be pairwise distinct.

Interpolation: how to restore f from values $f(y_0), \ldots, f(y_d)$?

So, we always assume that f is given by a black-box allowing to calculate f at a given point.

$$f = \sum_{0 \le j \le d} f(y_j) \cdot \frac{(X - y_0) \cdots (X - y_{j-1})(X - y_{j+1}) \cdots (X - y_d)}{(y_j - y_0) \cdots (y_j - y_{j-1})(y_j - y_{j+1}) \cdots (y_j - y_d)}.$$

Proof. The values of two polynomials both of degrees d in the left-hand and right-hand sides are equal at d+1 points y_0, \ldots, y_d , therefore, these two polynomials coincide.

Let $f = \sum_{0 \le i \le d} a_i X^i$ be a polynomial of degree d. Let y_0, \dots, y_d be pairwise distinct.

Interpolation: how to restore f from values $f(y_0), \ldots, f(y_d)$?

So, we always assume that f is given by a black-box allowing to calculate f at a given point.

$$f = \sum_{0 \leq j \leq d} f(y_j) \cdot \frac{(X - y_0) \cdots (X - y_{j-1})(X - y_{j+1}) \cdots (X - y_d)}{(y_j - y_0) \cdots (y_j - y_{j-1})(y_j - y_{j+1}) \cdots (y_j - y_d)}.$$

Proof. The values of two polynomials both of degrees d in the left-hand and right-hand sides are equal at d+1 points y_0, \ldots, y_d , therefore, these two polynomials coincide.

Let $f = \sum_{0 \le i \le d} a_i X^i$ be a polynomial of degree d. Let y_0, \dots, y_d be pairwise distinct.

Interpolation: how to restore f from values $f(y_0), \ldots, f(y_d)$?

So, we always assume that f is given by a black-box allowing to calculate f at a given point.

$$f = \sum_{0 \le j \le d} f(y_j) \cdot \frac{(X - y_0) \cdots (X - y_{j-1})(X - y_{j+1}) \cdots (X - y_d)}{(y_j - y_0) \cdots (y_j - y_{j-1})(y_j - y_{j+1}) \cdots (y_j - y_d)}.$$

Proof. The values of two polynomials both of degrees d in the left-hand and right-hand sides are equal at d+1 points y_0, \ldots, y_d , therefore,

<ロ > → □ > → □ > → □ > → □ → ○ ○ ○

Let $f = \sum_{0 \le i \le d} a_i X^i$ be a polynomial of degree d. Let y_0, \dots, y_d be pairwise distinct.

Interpolation: how to restore f from values $f(y_0), \ldots, f(y_d)$?

So, we always assume that f is given by a black-box allowing to calculate f at a given point.

$$f = \sum_{0 \leq j \leq d} f(y_j) \cdot \frac{(X - y_0) \cdots (X - y_{j-1})(X - y_{j+1}) \cdots (X - y_d)}{(y_j - y_0) \cdots (y_j - y_{j-1})(y_j - y_{j+1}) \cdots (y_j - y_d)}.$$

Polynomial $f = \sum_{1 \le i \le t} a_i X^{b_i}$ is **t-sparse**.

Informally: the number t of monomials is much smaller than $deg(t) = \max_{1 \le i \le t} \{b_i\}.$

How to interpolate f better than Lagrangian interpolation whose complexity depends on deg(f) (rather than on t)?

Polynomial $f = \sum_{1 < i < t} a_i X^{b_i}$ is *t*-sparse.

Informally: the number t of monomials is much smaller than $deg(f) = \max_{1 \le i \le t} \{b_i\}.$

How to interpolate f better than Lagrangian interpolation whose complexity depends on deg(f) (rather than on t)?

Polynomial $f = \sum_{1 < i < t} a_i X^{b_i}$ is *t*-sparse.

Informally: the number t of monomials is much smaller than $deg(f) = \max_{1 \le i \le t} \{b_i\}.$

How to interpolate f better than Lagrangian interpolation whose complexity depends on deg(f) (rather than on t)?

Polynomial $f = \sum_{1 \le i \le t} a_i X^{b_i}$ is *t*-sparse.

Informally: the number t of monomials is much smaller than $deg(f) = \max_{1 \le i \le t} \{b_i\}.$

How to interpolate f better than Lagrangian interpolation whose complexity depends on deg(f) (rather than on t)?

D is a linear operator on a space of functions (for example, complex or real).

Assume that for any eigen-value λ of D the eigen-space $E_{\lambda} := \{u : Du = \lambda u\}$ has dimension $\dim(E_{\lambda}) = 1$.

Assume also that there exists a constant c (complex or real) such that $u(c) \neq 0$ for any eigen-value λ and any eigen-function $0 \neq u \in E_{\lambda}$.

D is a linear operator on a space of functions (for example, complex or real).

Assume that for any eigen-value λ of D the eigen-space $E_{\lambda} := \{u : Du = \lambda u\}$ has dimension $\dim(E_{\lambda}) = 1$.

Assume also that there exists a constant c (complex or real) such that $u(c) \neq 0$ for any eigen-value λ and any eigen-function $0 \neq u \in E_{\lambda}$.

D is a linear operator on a space of functions (for example, complex or real).

Assume that for any eigen-value λ of D the eigen-space $E_{\lambda} := \{u : Du = \lambda u\}$ has dimension $\dim(E_{\lambda}) = 1$.

Assume also that there exists a constant c (complex or real) such that $u(c) \neq 0$ for any eigen-value λ and any eigen-function $0 \neq u \in E_{\lambda}$.

D is a linear operator on a space of functions (for example, complex or real).

Assume that for any eigen-value λ of D the eigen-space $E_{\lambda} := \{u : Du = \lambda u\}$ has dimension $\dim(E_{\lambda}) = 1$.

Assume also that there exists a constant c (complex or real) such that $u(c) \neq 0$ for any eigen-value λ and any eigen-function $0 \neq u \in E_{\lambda}$.

D is a linear operator on a space of functions (for example, complex or real).

Assume that for any eigen-value λ of D the eigen-space $E_{\lambda} := \{u : Du = \lambda u\}$ has dimension $\dim(E_{\lambda}) = 1$.

Assume also that there exists a constant c (complex or real) such that $u(c) \neq 0$ for any eigen-value λ and any eigen-function $0 \neq u \in E_{\lambda}$.

D is a linear operator on a space of functions (for example, complex or real).

Assume that for any eigen-value λ of D the eigen-space $E_{\lambda} := \{u : Du = \lambda u\}$ has dimension $\dim(E_{\lambda}) = 1$.

Assume also that there exists a constant c (complex or real) such that $u(c) \neq 0$ for any eigen-value λ and any eigen-function $0 \neq u \in E_{\lambda}$.

Pick an arbitrary $0 \neq u_0 \in E_{\lambda}$, then $E_{\lambda} = \{u = au_0 : a \in \mathbb{C} \text{ or } a \in \mathbb{R}\}$, and thereby, it suffices to have a value u(c) to find $a = u(c)/u_0(c)$.

Function f is t-sparse (with respect to operator D) if $f = u_1 + \cdots + u_t$ where u_1, \ldots, u_t are eigen-functions of D (with some eigen-values $\lambda_1, \ldots, \lambda_t$, respectively).

Our goal is to interpolate *t*-sparse function knowing just *t*.

Assume that having a black-box for f we have also a black-box for Df

Note that
$$(D^i f) = \sum_{1 \le j \le t} \lambda^i_j u_j$$
, hence $(D^i f)(c) = \sum_{1 \le j \le t} \lambda^i_j u_j(c)$.

Function f is t-sparse (with respect to operator D) if $f = u_1 + \cdots + u_t$ where u_1, \ldots, u_t are eigen-functions of D (with some eigen-values $\lambda_1, \ldots, \lambda_t$, respectively).

Our goal is to interpolate *t*-sparse function knowing just *t*.

Assume that having a black-box for f we have also a black-box for Df.

Note that
$$(D^i f) = \sum_{1 \le j \le t} \lambda^i_j u_j$$
, hence $(D^i f)(c) = \sum_{1 \le j \le t} \lambda^i_j u_j(c)$.

Function f is t-sparse (with respect to operator D) if $f = u_1 + \cdots + u_t$ where u_1, \ldots, u_t are eigen-functions of D (with some eigen-values $\lambda_1, \ldots, \lambda_t$, respectively).

Our goal is to interpolate *t*-sparse function knowing just *t*.

Assume that having a black-box for f we have also a black-box for Df

Involving the black-boxes the algorithm calculates

$$f(c), (Df)(c), (D^2f)(c), \ldots, (D^{2t}f)(c).$$

Note that
$$(D^i f) = \sum_{1 \le j \le t} \lambda^i_j u_j$$
, hence $(D^i f)(c) = \sum_{1 \le j \le t} \lambda^i_j u_j(c)$.

Function f is t-sparse (with respect to operator D) if $f = u_1 + \cdots + u_t$ where u_1, \ldots, u_t are eigen-functions of D (with some eigen-values $\lambda_1, \ldots, \lambda_t$, respectively).

Our goal is to interpolate *t*-sparse function knowing just *t*.

Assume that having a black-box for f we have also a black-box for Df

Involving the black-boxes the algorithm calculates f(c), (Df)(c), $(D^2f)(c)$, ..., $(D^{2t}f)(c)$.

Note that $(D^i f) = \sum_{1 \le j \le t} \lambda^i_j u_j$, hence $(D^i f)(c) = \sum_{1 \le j \le t} \lambda^i_j u_j(c)$.

Function f is t-sparse (with respect to operator D) if $f = u_1 + \cdots + u_t$ where u_1, \ldots, u_t are eigen-functions of D (with some eigen-values $\lambda_1, \ldots, \lambda_t$, respectively).

Our goal is to interpolate *t*-sparse function knowing just *t*.

Assume that having a black-box for f we have also a black-box for Df.

Involving the black-boxes the algorithm calculates f(c), (Df)(c), $(D^2f)(c)$, ..., $(D^{2t}f)(c)$.

Note that $(D^i f) = \sum_{1 \le j \le t} \lambda^i_j u_j$, hence $(D^i f)(c) = \sum_{1 \le j \le t} \lambda^i_j u_j(c)$.

Function f is t-sparse (with respect to operator D) if $f = u_1 + \cdots + u_t$ where u_1, \ldots, u_t are eigen-functions of D (with some eigen-values $\lambda_1, \ldots, \lambda_t$, respectively).

Our goal is to interpolate *t*-sparse function knowing just *t*.

Assume that having a black-box for f we have also a black-box for Df.

Note that
$$(D^i f) = \sum_{1 \le j \le t} \lambda^i_j u_j$$
, hence $(D^i f)(c) = \sum_{1 \le j \le t} \lambda^i_j u_j(c)$.

Function f is t-sparse (with respect to operator D) if $f = u_1 + \cdots + u_t$ where u_1, \ldots, u_t are eigen-functions of D (with some eigen-values $\lambda_1, \ldots, \lambda_t$, respectively).

Our goal is to interpolate *t*-sparse function knowing just *t*.

Assume that having a black-box for f we have also a black-box for Df.

Note that
$$(D^i f) = \sum_{1 \le j \le t} \lambda^i_j u_j$$
, hence $(D^i f)(c) = \sum_{1 \le j \le t} \lambda^i_j u_j(c)$.

Function f is t-sparse (with respect to operator D) if $f = u_1 + \cdots + u_t$ where u_1, \ldots, u_t are eigen-functions of D (with some eigen-values $\lambda_1, \ldots, \lambda_t$, respectively).

Our goal is to interpolate *t*-sparse function knowing just *t*.

Assume that having a black-box for f we have also a black-box for Df.

Note that
$$(D^i f) = \sum_{1 \le j \le t} \lambda^i_j u_j$$
, hence $(D^i f)(c) = \sum_{1 \le j \le t} \lambda^i_j u_j(c)$.

$$W_{t} = \begin{pmatrix} f(c) & (D^{1}f)(c) & \cdots & (D^{t-1}f)(c) \\ (D^{1}f)(c) & (D^{2}f)(c) & \cdots & (D^{t}f)(c) \\ \vdots & \vdots & \ddots & \vdots \\ (D^{t-1}f)(c) & (D^{t}f)(c) & \cdots & (D^{2t-2}f)(c) \end{pmatrix} = \begin{pmatrix} \lambda_{1}^{0} & \cdots & \lambda_{1}^{t-1} \\ \lambda_{1}^{1} & \cdots & \lambda_{t}^{1} \\ \vdots & \ddots & \ddots & \vdots \\ \lambda_{1}^{t-1} & \cdots & \lambda_{t}^{t-1} \end{pmatrix} \begin{pmatrix} u_{1}(c) & 0 & \cdots & 0 \\ 0 & u_{2}(c) & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots \\ 0 & 0 & \cdots & u_{t}(c) \end{pmatrix} \begin{pmatrix} \lambda_{1}^{0} & \cdots & \lambda_{1}^{t-1} \\ \lambda_{2}^{0} & \cdots & \lambda_{2}^{t-1} \\ \vdots & \ddots & \ddots & \ddots \\ \lambda_{t}^{0} & \cdots & \lambda_{t}^{t-1} \end{pmatrix}$$

Consider the following $t \times t$ Wronskian (being a Hankel matrix)

$$W_{t} = \begin{pmatrix} f(c) & (D^{1}f)(c) & \cdots & (D^{t-1}f)(c) \\ (D^{1}f)(c) & (D^{2}f)(c) & \cdots & (D^{t}f)(c) \\ & \cdots & & \cdots & & \cdots \\ (D^{t-1}f)(c) & (D^{t}f)(c) & \cdots & (D^{2t-2}f)(c) \end{pmatrix} = \begin{pmatrix} \lambda_{1}^{0} & \cdots & \lambda_{t}^{t-1} \\ \lambda_{1}^{1} & \cdots & \lambda_{t}^{t} \\ \vdots & \vdots & \ddots & \ddots \\ \lambda_{1}^{t-1} & \cdots & \lambda_{t}^{t-1} \end{pmatrix} \begin{pmatrix} u_{1}(c) & 0 & \cdots & 0 \\ 0 & u_{2}(c) & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots \\ 0 & 0 & \cdots & u_{t}(c) \end{pmatrix} \begin{pmatrix} \lambda_{1}^{0} & \cdots & \lambda_{t}^{t-1} \\ \lambda_{2}^{0} & \cdots & \lambda_{t}^{t-1} \\ \vdots & \ddots & \ddots & \ddots \\ \lambda_{t}^{0} & \cdots & \lambda_{t}^{t-1} \end{pmatrix}$$

W₁₋₁ ← → ← → ← → ← → → → →

Consider the following $t \times t$ Wronskian (being a Hankel matrix)

$$W_t = \left(egin{array}{cccc} f(c) & (D^1 f)(c) & \cdots & (D^{t-1} f)(c) \ (D^1 f)(c) & (D^2 f)(c) & \cdots & (D^t f)(c) \ \cdots & \cdots & \cdots & \cdots \ (D^{t-1} f)(c) & (D^t f)(c) & \cdots & (D^{2t-2} f)(c) \end{array}
ight) =$$

$$\begin{pmatrix} \lambda_1^0 & \cdots & \lambda_t^0 \\ \lambda_1^t & \cdots & \lambda_t^1 \\ \cdots & \cdots & \cdots \\ \lambda_1^{t-1} & \cdots & \lambda_t^{t-1} \end{pmatrix} \begin{pmatrix} u_1(c) & 0 & \cdots & 0 \\ 0 & u_2(c) & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & u_t(c) \end{pmatrix} \begin{pmatrix} \lambda_1^0 & \cdots & \lambda_1^{t-1} \\ \lambda_2^0 & \cdots & \lambda_2^{t-1} \\ \cdots & \cdots & \cdots \\ \lambda_t^0 & \cdots & \lambda_t^{t-1} \end{pmatrix}$$

Consider the following $t \times t$ Wronskian (being a Hankel matrix)

$$W_{t} = \begin{pmatrix} f(c) & (D^{1}f)(c) & \cdots & (D^{t-1}f)(c) \\ (D^{1}f)(c) & (D^{2}f)(c) & \cdots & (D^{t}f)(c) \\ \cdots & \cdots & \cdots & \cdots \\ (D^{t-1}f)(c) & (D^{t}f)(c) & \cdots & (D^{2t-2}f)(c) \end{pmatrix} = \begin{pmatrix} \lambda_{1}^{0} & \cdots & \lambda_{t}^{t} \\ \lambda_{1}^{1} & \cdots & \lambda_{t}^{t} \\ \vdots & \vdots & \ddots & \ddots \\ \lambda_{1}^{t-1} & \cdots & \lambda_{t}^{t-1} \end{pmatrix} \begin{pmatrix} u_{1}(c) & 0 & \cdots & 0 \\ 0 & u_{2}(c) & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots \\ 0 & 0 & \cdots & u_{t}(c) \end{pmatrix} \begin{pmatrix} \lambda_{1}^{0} & \cdots & \lambda_{t}^{t-1} \\ \lambda_{2}^{0} & \cdots & \lambda_{2}^{t-1} \\ \vdots & \ddots & \ddots & \ddots \\ \lambda_{t}^{0} & \cdots & \lambda_{t}^{t-1} \end{pmatrix}$$

Consider the following $t \times t$ Wronskian (being a Hankel matrix)

$$W_{t} = \begin{pmatrix} f(c) & (D^{1}f)(c) & \cdots & (D^{t-1}f)(c) \\ (D^{1}f)(c) & (D^{2}f)(c) & \cdots & (D^{t}f)(c) \\ \cdots & \cdots & \cdots & \cdots \\ (D^{t-1}f)(c) & (D^{t}f)(c) & \cdots & (D^{2t-2}f)(c) \end{pmatrix} = \begin{pmatrix} \lambda_{1}^{0} & \cdots & \lambda_{t}^{t-1} \\ \lambda_{1}^{1} & \cdots & \lambda_{t}^{t} \\ \cdots & \cdots & \cdots \\ \lambda_{1}^{t-1} & \cdots & \lambda_{t}^{t-1} \end{pmatrix} \begin{pmatrix} u_{1}(c) & 0 & \cdots & 0 \\ 0 & u_{2}(c) & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & u_{t}(c) \end{pmatrix} \begin{pmatrix} \lambda_{1}^{0} & \cdots & \lambda_{t}^{t-1} \\ \lambda_{2}^{0} & \cdots & \lambda_{t}^{t-1} \\ \cdots & \cdots & \cdots \\ \lambda_{t}^{0} & \cdots & \lambda_{t}^{t-1} \end{pmatrix}$$

The first (and the third) matrices in the right-hand side are Vandermond (and its transposed) matrices, therefore W_t is non-singular.

Consider the following $t \times t$ Wronskian (being a Hankel matrix)

$$W_{t} = \begin{pmatrix} f(c) & (D^{1}f)(c) & \cdots & (D^{t-1}f)(c) \\ (D^{1}f)(c) & (D^{2}f)(c) & \cdots & (D^{t}f)(c) \\ \vdots & \vdots & \ddots & \vdots \\ (D^{t-1}f)(c) & (D^{t}f)(c) & \cdots & (D^{2t-2}f)(c) \end{pmatrix} = \begin{pmatrix} \lambda_{1}^{0} & \cdots & \lambda_{t}^{t-1} \\ \lambda_{1}^{1} & \cdots & \lambda_{t}^{t} \\ \vdots & \ddots & \ddots & \vdots \\ \lambda_{1}^{t-1} & \cdots & \lambda_{t}^{t-1} \end{pmatrix} \begin{pmatrix} u_{1}(c) & 0 & \cdots & 0 \\ 0 & u_{2}(c) & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{t}(c) \end{pmatrix} \begin{pmatrix} \lambda_{1}^{0} & \cdots & \lambda_{t}^{t-1} \\ \lambda_{2}^{0} & \cdots & \lambda_{2}^{t-1} \\ \vdots & \ddots & \ddots & \ddots \\ \lambda_{t}^{t} & \cdots & \lambda_{t}^{t-1} \end{pmatrix}$$

The first (and the third) matrices in the right-hand side are Vandermond (and its transposed) matrices, therefore W_t is non-singular.

Consider (a unique) polynomial $g = X^t + \sum_{0 \le i < t} e_i X^i$ with the roots

 $\lambda_1, \dots, \lambda_t$. Then $W_{t+1} \cdot (e_0, \dots, e_{t-1}, 1)^T = 0$. Hence $rank(W_{t+1}) = t$ since W_{t+1} contains W_t as a submatrix in the upper left corner and W_t is non-singular, thus $(e_0, \dots, e_{t-1}, 1)$ is the unique (normalized)

Consider the following $t \times t$ Wronskian (being a Hankel matrix)

$$W_{t} = \begin{pmatrix} f(c) & (D^{1}f)(c) & \cdots & (D^{t-1}f)(c) \\ (D^{1}f)(c) & (D^{2}f)(c) & \cdots & (D^{t}f)(c) \\ \vdots & \vdots & \ddots & \vdots \\ (D^{t-1}f)(c) & (D^{t}f)(c) & \cdots & (D^{2t-2}f)(c) \end{pmatrix} = \begin{pmatrix} \lambda_{1}^{0} & \cdots & \lambda_{t}^{t-1} \\ \lambda_{1}^{1} & \cdots & \lambda_{t}^{t} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{1}^{t-1} & \cdots & \lambda_{t}^{t-1} \end{pmatrix} \begin{pmatrix} u_{1}(c) & 0 & \cdots & 0 \\ 0 & u_{2}(c) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{t}(c) \end{pmatrix} \begin{pmatrix} \lambda_{1}^{0} & \cdots & \lambda_{1}^{t-1} \\ \lambda_{2}^{0} & \cdots & \lambda_{2}^{t-1} \\ \vdots & \ddots & \ddots & \vdots \\ \lambda_{t}^{0} & \cdots & \lambda_{t}^{t-1} \end{pmatrix}$$

The first (and the third) matrices in the right-hand side are Vandermond (and its transposed) matrices, therefore W_t is non-singular.

Consider (a unique) polynomial $g = X^t + \sum_{0 \le i \le t} e_i X^i$ with the roots

$$\lambda_1, \ldots, \lambda_t$$
. Then $W_{t+1} \cdot (e_0, \ldots, e_{t-1}, 1)^T = 0$. Hence $rank(W_{t+1}) = t$ since W_{t+1} contains W_t as a submatrix in the upper left corner and W_t is non-singular, thus $(e_0, \ldots, e_{t-1}, 1)$ is the unique (normalized)

a homogeneous linear system $W_{t+1} \leftarrow \mathbb{R} + \mathbb{R}$

Consider the following $t \times t$ Wronskian (being a Hankel matrix)

$$W_{t} = \begin{pmatrix} f(c) & (D^{1}f)(c) & \cdots & (D^{t-1}f)(c) \\ (D^{1}f)(c) & (D^{2}f)(c) & \cdots & (D^{t}f)(c) \\ \cdots & \cdots & \cdots & \cdots \\ (D^{t-1}f)(c) & (D^{t}f)(c) & \cdots & (D^{2t-2}f)(c) \end{pmatrix} = \begin{pmatrix} \lambda_{1}^{0} & \cdots & \lambda_{t}^{t-1} \\ \lambda_{1}^{1} & \cdots & \lambda_{t}^{t} \\ \cdots & \cdots & \cdots \\ \lambda_{t}^{t-1} & \cdots & \lambda_{t}^{t-1} \end{pmatrix} \begin{pmatrix} u_{1}(c) & 0 & \cdots & 0 \\ 0 & u_{2}(c) & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & u_{t}(c) \end{pmatrix} \begin{pmatrix} \lambda_{1}^{0} & \cdots & \lambda_{t}^{t-1} \\ \lambda_{2}^{0} & \cdots & \lambda_{t}^{t-1} \\ \cdots & \cdots & \cdots \\ \lambda_{t}^{0} & \cdots & \lambda_{t}^{t-1} \end{pmatrix}$$

The first (and the third) matrices in the right-hand side are Vandermond (and its transposed) matrices, therefore W_t is non-singular.

Consider (a unique) polynomial $g = X^t + \sum_{0 \le i \le t} e_i X^i$ with the roots $\lambda_1, \dots, \lambda_t$. Then $W_{t+1} \cdot (e_0, \dots, e_{t-1}, 1)^T = 0$. Hence $rank(W_{t+1}) = t$ since W_{t+1} contains W_t as a submatrix in the upper left corner and W_t is non-singular, thus $(e_0, \ldots, e_{t-1}, 1)$ is the unique (normalized)

Consider the following $t \times t$ Wronskian (being a Hankel matrix)

$$W_{t} = \begin{pmatrix} f(c) & (D^{1}f)(c) & \cdots & (D^{t-1}f)(c) \\ (D^{1}f)(c) & (D^{2}f)(c) & \cdots & (D^{t}f)(c) \\ \cdots & \cdots & \cdots & \cdots \\ (D^{t-1}f)(c) & (D^{t}f)(c) & \cdots & (D^{2t-2}f)(c) \end{pmatrix} = \begin{pmatrix} \lambda_{1}^{0} & \cdots & \lambda_{t}^{t-1} \\ \lambda_{1}^{1} & \cdots & \lambda_{t}^{t} \\ \vdots & \ddots & \ddots & \vdots \\ \lambda_{1}^{t-1} & \cdots & \lambda_{t}^{t-1} \end{pmatrix} \begin{pmatrix} u_{1}(c) & 0 & \cdots & 0 \\ 0 & u_{2}(c) & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{t}(c) \end{pmatrix} \begin{pmatrix} \lambda_{1}^{0} & \cdots & \lambda_{t}^{t-1} \\ \lambda_{2}^{0} & \cdots & \lambda_{t}^{t-1} \\ \vdots & \ddots & \ddots & \ddots \\ \lambda_{t}^{t} & \cdots & \lambda_{t}^{t-1} \end{pmatrix}$$

The first (and the third) matrices in the right-hand side are Vandermond (and its transposed) matrices, therefore W_t is non-singular.

Consider (a unique) polynomial $g = X^t + \sum_{0 \le i < t} e_i X^i$ with the roots $\lambda_1, \ldots, \lambda_t$. Then $W_{t+1} \cdot (e_0, \ldots, e_{t-1}, 1)^T = 0$. Hence $rank(W_{t+1}) = t$ since W_{t+1} contains W_t as a submatrix in the upper left corner and W_t is non-singular, thus $(e_0, \ldots, e_{t-1}, 1)$ is the unique (normalized)

solution of a homogeneous linear system $W_{t+1}E = 0$.

The algorithm (due to G.-Karpinski-Singer) finds

- 1. $(e_0, \ldots, e_{t-1}, 1)$ as a solution of a homogeneous linear system;
- 2. the roots $\lambda_1, \dots, \lambda_t$ of polynomial $g = X^t + \sum_{0 \le i < t} e_i X^i$;
- 3. $u_1(c), \ldots, u_t(c)$ from the decomposition of W_t .

The algorithm (due to G.-Karpinski-Singer) finds

- 1. $(e_0, \ldots, e_{t-1}, 1)$ as a solution of a homogeneous linear system;
- 2. the roots $\lambda_1, \ldots, \lambda_t$ of polynomial $g = X^t + \sum_{0 \le i < t} e_i X^i$;
- 3. $u_1(c), \ldots, u_t(c)$ from the decomposition of W_t .

The algorithm (due to G.-Karpinski-Singer) finds

- 1. $(e_0, \ldots, e_{t-1}, 1)$ as a solution of a homogeneous linear system;
- 2. the roots $\lambda_1, \ldots, \lambda_t$ of polynomial $g = X^t + \sum_{0 \le i < t} e_i X^i$;
- 3. $u_1(c), \ldots, u_t(c)$ from the decomposition of W_t .

The algorithm (due to G.-Karpinski-Singer) finds

- 1. $(e_0, \ldots, e_{t-1}, 1)$ as a solution of a homogeneous linear system;
- 2. the roots $\lambda_1, \ldots, \lambda_t$ of polynomial $g = X^t + \sum_{0 \le i < t} e_i X^i$;
- 3. $u_1(c), \ldots, u_t(c)$ from the decomposition of W_t .

The algorithm (due to G.-Karpinski-Singer) finds

- 1. $(e_0, \ldots, e_{t-1}, 1)$ as a solution of a homogeneous linear system;
- 2. the roots $\lambda_1, \dots, \lambda_t$ of polynomial $g = X^t + \sum_{0 \le i < t} e_i X^i$;
- 3. $u_1(c), \ldots, u_t(c)$ from the decomposition of W_t .

The algorithm (due to G.-Karpinski-Singer) finds

- 1. $(e_0, \ldots, e_{t-1}, 1)$ as a solution of a homogeneous linear system;
- 2. the roots $\lambda_1, \dots, \lambda_t$ of polynomial $g = X^t + \sum_{0 \le i < t} e_i X^i$;
- 3. $u_1(c), \ldots, u_t(c)$ from the decomposition of W_t .

Sparse polynomial interpolation in Pochhammer basis

Linear operator (Df)(X) := X(f(X) - f(X - 1)) on the linear space of polynomials with the Pochhammer basis of the eigen-function of D being $u_k = X(X - 1)(X - 2) \cdots (X - k + 1)$, $k \ge 0$ with eigen-values k

Sparse Fourier decomposition

Linear operator Df := f'' acts as the second derivative on the space of continuous functions with the Fourier basis of eigen-functions $\sin(kX)$, $k \ge 1$ of D with eigen-values $-k^2$.

Sparse multivariate polynomial interpolation

Sparse polynomial interpolation in Pochhammer basis

Linear operator (Df)(X) := X(f(X) - f(X - 1)) on the linear space of polynomials with the Pochhammer basis of the eigen-function of D being $u_k = X(X - 1)(X - 2) \cdots (X - k + 1)$, $k \ge 0$ with eigen-values k

Sparse Fourier decomposition

Linear operator Df := f'' acts as the second derivative on the space of continuous functions with the Fourier basis of eigen-functions $\sin(kX)$, $k \ge 1$ of D with eigen-values $-k^2$.

Sparse multivariate polynomial interpolation

Sparse polynomial interpolation in Pochhammer basis

Linear operator (Df)(X) := X(f(X) - f(X - 1)) on the linear space of polynomials with the Pochhammer basis of the eigen-function of D being $u_k = X(X - 1)(X - 2) \cdots (X - k + 1)$, $k \ge 0$ with eigen-values k.

Sparse Fourier decomposition

Linear operator Df := f'' acts as the second derivative on the space of continuous functions with the Fourier basis of eigen-functions $\sin(kX)$, $k \ge 1$ of D with eigen-values $-k^2$.

Sparse multivariate polynomial interpolation

Sparse polynomial interpolation in Pochhammer basis

Linear operator (Df)(X) := X(f(X) - f(X - 1)) on the linear space of polynomials with the Pochhammer basis of the eigen-function of D being $u_k = X(X - 1)(X - 2) \cdots (X - k + 1)$, $k \ge 0$ with eigen-values k.

Sparse Fourier decomposition

Linear operator Df := f'' acts as the second derivative on the space of continuous functions with the Fourier basis of eigen-functions $\sin(kX)$, $k \ge 1$ of D with eigen-values $-k^2$.

Sparse multivariate polynomial interpolation

Sparse polynomial interpolation in Pochhammer basis

Linear operator (Df)(X) := X(f(X) - f(X - 1)) on the linear space of polynomials with the Pochhammer basis of the eigen-function of D being $u_k = X(X - 1)(X - 2) \cdots (X - k + 1)$, $k \ge 0$ with eigen-values k.

Sparse Fourier decomposition

Linear operator Df := f'' acts as the second derivative on the space of continuous functions with the Fourier basis of eigen-functions $\sin(kX)$, $k \ge 1$ of D with eigen-values $-k^2$.

Sparse multivariate polynomial interpolation

Sparse polynomial interpolation in Pochhammer basis

Linear operator (Df)(X) := X(f(X) - f(X - 1)) on the linear space of polynomials with the Pochhammer basis of the eigen-function of D being $u_k = X(X - 1)(X - 2) \cdots (X - k + 1)$, $k \ge 0$ with eigen-values k.

Sparse Fourier decomposition

Linear operator Df := f'' acts as the second derivative on the space of continuous functions with the Fourier basis of eigen-functions $\sin(kX)$, $k \ge 1$ of D with eigen-values $-k^2$.

Sparse multivariate polynomial interpolation

Sparse polynomial interpolation in Pochhammer basis

Linear operator (Df)(X) := X(f(X) - f(X - 1)) on the linear space of polynomials with the Pochhammer basis of the eigen-function of D being $u_k = X(X - 1)(X - 2) \cdots (X - k + 1)$, $k \ge 0$ with eigen-values k.

Sparse Fourier decomposition

Linear operator Df := f'' acts as the second derivative on the space of continuous functions with the Fourier basis of eigen-functions $\sin(kX)$, $k \ge 1$ of D with eigen-values $-k^2$.

Sparse multivariate polynomial interpolation

Sparse polynomial interpolation in Pochhammer basis

Linear operator (Df)(X) := X(f(X) - f(X - 1)) on the linear space of polynomials with the Pochhammer basis of the eigen-function of D being $u_k = X(X - 1)(X - 2) \cdots (X - k + 1)$, $k \ge 0$ with eigen-values k.

Sparse Fourier decomposition

Linear operator Df := f'' acts as the second derivative on the space of continuous functions with the Fourier basis of eigen-functions $\sin(kX)$, $k \ge 1$ of D with eigen-values $-k^2$.

Sparse multivariate polynomial interpolation

Interpolation over finite fields

One can interpolate sparse polynomials over finite fields.

The latter algorithm fails over finite fields since eigen-values $p_1^{s_1} \cdots p_n^{s_n}$ can coincide for different monomials, therefore the dimensions of eigen-spaces can be greater than 1.

Interpolation of sparse rational functions

Rational function f is (t_1, t_2) -sparse if $f = f_1/f_2$ where polynomial f_1 (respectively, f_2) is t_1 -sparse (respectively, t_2 -sparse).

Note that the irreducible representation of a rational function is not necessary sparse: $1 + X + X^2 + \cdots + X^d = (X^{d+1} - 1)/(X - 1)$.

Interpolation over finite fields

One can interpolate sparse polynomials over finite fields.

The latter algorithm fails over finite fields since eigen-values $p_1^{s_1} \cdots p_n^{s_n}$ can coincide for different monomials, therefore the dimensions of eigen-spaces can be greater than 1.

Interpolation of sparse rational functions

Rational function f is (t_1, t_2) -sparse if $f = f_1/f_2$ where polynomial f_1 (respectively, f_2) is t_1 -sparse (respectively, t_2 -sparse).

Note that the irreducible representation of a rational function is not necessary sparse: $1 + X + X^2 + \cdots + X^d = (X^{d+1} - 1)/(X - 1)$.

Interpolation over finite fields

One can interpolate sparse polynomials over finite fields.

The latter algorithm fails over finite fields since eigen-values $p_1^{s_1} \cdots p_n^{s_n}$ can coincide for different monomials, therefore the dimensions of eigen-spaces can be greater than 1.

Interpolation of sparse rational functions

Rational function f is (t_1, t_2) -sparse if $f = f_1/f_2$ where polynomial f_1 (respectively, f_2) is t_1 -sparse (respectively, t_2 -sparse).

Note that the irreducible representation of a rational function is not necessary sparse: $1 + X + X^2 + \cdots + X^d = (X^{d+1} - 1)/(X - 1)$.

Interpolation over finite fields

One can interpolate sparse polynomials over finite fields.

The latter algorithm fails over finite fields since eigen-values $p_1^{s_1} \cdots p_n^{s_n}$ can coincide for different monomials, therefore the dimensions of eigen-spaces can be greater than 1.

Interpolation of sparse rational functions

Rational function f is (t_1, t_2) -sparse if $f = f_1/f_2$ where polynomial f_1 (respectively, f_2) is t_1 -sparse (respectively, t_2 -sparse).

Note that the irreducible representation of a rational function is not necessary sparse: $1 + X + X^2 + \cdots + X^d = (X^{d+1} - 1)/(X - 1)$.

Interpolation over finite fields

One can interpolate sparse polynomials over finite fields.

The latter algorithm fails over finite fields since eigen-values $p_1^{s_1} \cdots p_n^{s_n}$ can coincide for different monomials, therefore the dimensions of eigen-spaces can be greater than 1.

Interpolation of sparse rational functions

Rational function f is (t_1, t_2) -sparse if $f = f_1/f_2$ where polynomial f_1 (respectively, f_2) is t_1 -sparse (respectively, t_2 -sparse).

Note that the irreducible representation of a rational function is not necessary sparse: $1 + X + X^2 + \cdots + X^d = (X^{d+1} - 1)/(X - 1)$.

Interpolation over finite fields

One can interpolate sparse polynomials over finite fields.

The latter algorithm fails over finite fields since eigen-values $p_1^{s_1} \cdots p_n^{s_n}$ can coincide for different monomials, therefore the dimensions of eigen-spaces can be greater than 1.

Interpolation of sparse rational functions

Rational function f is (t_1, t_2) -sparse if $f = f_1/f_2$ where polynomial f_1 (respectively, f_2) is t_1 -sparse (respectively, t_2 -sparse).

Note that the irreducible representation of a rational function is not necessary sparse: $1 + X + X^2 + \cdots + X^d = (X^{d+1} - 1)/(X - 1)$.