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Lagrangian interpolation

Let f =3 ocica a; X' be a polynomial of degree d.
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Lagrangian interpolation

Let f =3 ocica a;X' be a polynomial of degree d. Let yp, ..., yq be
pairwise distinct.

Interpolation: how to restore f from values f(yo), ..., f(Vq)?
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Lagrangian interpolation

Let f=3 o<icq a;X' be a polynomial of degree d. Let yp, ..., yq be
pairwise distinct.

Interpolation: how to restore f from values f(yo), ..., f(Vq)?

So, we always assume that f is given by a black-box allowing to
calculate f at a given point.
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Lagrangian interpolation

Let f = Zogisd a;X' be a polynomial of degree d. Let yp, ..., yq be
pairwise distinct.

Interpolation: how to restore f from values f(yo), ..., f(y4)?
So, we always assume that f is given by a black-box allowing to
calculate f at a given point.

_ v (X =0) (X =y ) (X = Yjt) - (X = )
f_ogj;df(y/) Vi =yo) - W = Vi)W = Y1) - (¥ = Vo)
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Lagrangian interpolation

Let f = Zogigd a;X' be a polynomial of degree d. Let yp, ..., yq be
pairwise distinct.

Interpolation: how to restore f from values f(yo), ..., f(y4)?
So, we always assume that f is given by a black-box allowing to
calculate f at a given point.

_ v (X =0) (X =y ) (X = Yjt) - (X = )
=2y Vi=Yo) V= Y)W — Yje1) - (VY — Vo)

0<j<d

Proof. The values of two polynomials both of degrees d in the left-hand
and right-hand sides are equal at d + 1 points yy, ..., ¥4,
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Lagrangian interpolation

Let f = Zogigd a;X' be a polynomial of degree d. Let yp, ..., yq be
pairwise distinct.

Interpolation: how to restore f from values f(yo), ..., f(y4)?
So, we always assume that f is given by a black-box allowing to
calculate f at a given point.

_ v (X =0) (X =y ) (X = Yjt) - (X = )
=2y Vi=Yo) V= Y)W — Yje1) - (VY — Vo)

0<j<d

Proof. The values of two polynomials both of degrees d in the left-hand
and right-hand sides are equal at d + 1 points yy, ..., yq, therefore,
these two polynomials coincide.
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Sparse polynomials

Polynomial f = 37, a;X" is t-sparse.
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Sparse polynomials

Polynomial f = 37, ;_; aiX" is t-sparse.

Informally: the number t of monomials is much smaller than
deg(f) = maxX4 S,'St{b,'}.
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Sparse polynomials

Polynomial f = 37, ;_; aiX" is t-sparse.

Informally: the number t of monomials is much smaller than
deg(f) = maxi<i<t{bi}-

How to interpolate f better than Lagrangian interpolation whose
complexity depends on deg(f) (rather than on t)?
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Eigen-values and eigen-functions

D is a linear operator on a space of functions (for example, complex or
real).
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Eigen-values and eigen-functions

D is a linear operator on a space of functions (for example, complex or

real).

Assume that for any eigen-value X of D the eigen-space
E\ :={u : Du = \u} has dimension dim(E,) = 1.
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Eigen-values and eigen-functions

D is a linear operator on a space of functions (for example, complex or
real).

Assume that for any eigen-value X of D the eigen-space
E\ :={u : Du = \u} has dimension dim(E,) = 1.

Assume also that there exists a constant ¢ (complex or real) such that
u(c) # 0 for any eigen-value X\ and any eigen-function 0 # u € E,.
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Eigen-values and eigen-functions

D is a linear operator on a space of functions (for example, complex or
real).

Assume that for any eigen-value X of D the eigen-space
E\ :={u : Du = \u} has dimension dim(E,) = 1.

Assume also that there exists a constant ¢ (complex or real) such that
u(c) # 0 for any eigen-value X\ and any eigen-function 0 # u € E,.

Pick an arbitrary 0 # ug € E), then Ey = {u=auy : ac Cora € R},
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Eigen-values and eigen-functions

D is a linear operator on a space of functions (for example, complex or
real).

Assume that for any eigen-value X of D the eigen-space

E\ :={u : Du = \u} has dimension dim(E,) = 1.

Assume also that there exists a constant ¢ (complex or real) such that
u(c) # 0 for any eigen-value X\ and any eigen-function 0 # u € E,.

Pick an arbitrary 0 # ug € E), then Ey = {u=auy : ac Cora € R},
and thereby, it suffices to have a value u(c) to find a = u(c)/up(c).
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Interpolating sparse eigen-functions

Function f is t-sparse (with respect to operator D) if f = uy + -+ + Uz
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Interpolating sparse eigen-functions

Function f is t-sparse (with respect to operator D) if f = uy + -+ + Uz
where uy, ..., Us are eigen-functions of D (with some eigen-values
M, ..., At, respectively).
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Interpolating sparse eigen-functions

Function f is t-sparse (with respect to operator D) if f = uy + -+ + Uz
where uy, ..., Us are eigen-functions of D (with some eigen-values
M, ..., At, respectively).

Our goal is to interpolate t-sparse function knowing just t.
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Interpolating sparse eigen-functions

Function f is t-sparse (with respect to operator D) if f = uy + -+ + Uz
where uy, ..., Us are eigen-functions of D (with some eigen-values
M, ..., At, respectively).

Our goal is to interpolate t-sparse function knowing just t.
Assume that having a black-box for f we have also a black-box for Df.

Involving the black-boxes the algorithm calculates
f(c), (Df)(c), (D?f)(c), ... (D'F)(c).
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Interpolating sparse eigen-functions

Function f is t-sparse (with respect to operator D) if f = uy + -+ + Uz
where uy, ..., Us are eigen-functions of D (with some eigen-values
M, ..., At, respectively).

Our goal is to interpolate t-sparse function knowing just t.

Assume that having a black-box for f we have also a black-box for Df.

Involving the black-boxes the algorithm calculates
f(c), (Df)(c), (D?f)(c), ... (D'F)(c).

Note that (D'f) = >4 ;< AU,
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Interpolating sparse eigen-functions

Function f is t-sparse (with respect to operator D) if f = uy + -+ + Uz
where uy, ..., Us are eigen-functions of D (with some eigen-values
M, ..., At, respectively).

Our goal is to interpolate t-sparse function knowing just t.
Assume that having a black-box for f we have also a black-box for Df.

Involving the black-boxes the algorithm calculates
f(c), (Df)(c), (D?f)(c), ... (D'F)(c).

Note that (D'f) = Z1§j§t)\}uj, hence (D'f)(c) = Z1§j§t)‘/’:uj(c)-
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Generalized Wronskian
Consider the following t x t Wronskian (being a Hankel matrix)
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Generalized Wronskian
Consider the following t x t Wronskian (being a Hankel matrix)

fe)  (D'f)(e) --- (D"'F)(c)
W, = (D'f)(c) (D?f)(c) -~ (D'f)(c) | _
(D='f)(c) (D'f)(c) --- (D®-2f)(c)
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Generalized Wronskian

Consider the following t x t Wronskian (being a Hankel matrix)

flc)  (D'f)(c) (D=f)(c)

w,— | (P'Ne) (D*)(c) (D'f)(c)

(D"1)(e) (D')(e) - (D*-2M)(c)
AN uE 0 - 0
)‘1 /\,1‘ 0 up(c) - 0
A'g'—k N Af—# 0 0 - ue
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Generalized Wronskian
Consider the following t x t Wronskian (being a Hankel matrix)

f(c) (D'f)(c) --- (D"'f)(c)
W, = (D'f)(c) (D?*f)(c) ---  (D'f)(c) _
(D*'f)(c) (D'f)(c) --- (DP2f)(c)
A A u(c) 0 o 0 A AT
Al A 0 () -~ 0 A AL
AT 0 0 e ow@ )\ a0 AT

The first (and the third) matrices in the right-hand side are Vandermond
(and its transposed) matrices, therefore W; is non-singular.
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Generalized Wronskian
Consider the following t x t Wronskian (being a Hankel matrix)

f(c) (D'f)(c) --- (D"'f)(c)
W, = (D'f)(c) (D?*f)(c) ---  (D'f)(c) _
(D*'f)(c) (D'f)(c) --- (DP2f)(c)
A A u(c) 0 o 0 A AT
Al A 0 () -~ 0 A AL
AT 0 0 e ow@ )\ a0 AT

The first (and the third) matrices in the right-hand side are Vandermond
(and its transposed) matrices, therefore W; is non-singular.
Consider (a unique) polynomial g = X! + > _o<i<t €X' with the roots
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Generalized Wronskian
Consider the following t x t Wronskian (being a Hankel matrix)

f(c) (D'f)(c) --- (D"'f)(c)
W, = (D'f)(c) (D?*f)(c) ---  (D'f)(c) _
(D*'f)(c) (D'f)(c) --- (DP2f)(c)
A A u(c) 0 o 0 A AT
Al A 0 () -~ 0 A AL
AT 0 0 e ow@ )\ a0 AT

The first (and the third) matrices in the right-hand side are Vandermond
(and its transposed) matrices, therefore W; is non-singular.

Consider (a unique) polynomial g = X'+ > _;_; e; X" with the roots
Alyeees At Then Wt+1 : (eo,. . .,et,1,1)T =0.
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Generalized Wronskian
Consider the following t x t Wronskian (being a Hankel matrix)

f(c) (D'f)(e) --- (Df)(c)
W, = (D'f)(c) (D*f)(c) ---  (D'f)(c) _
(D) () (D'f)(e) --- (DP'2f)(c)
A9 ui(e) 0 - 0 A /\§—1\
A A] 0 w(c) - 0 PYIRE )\;1

The first (and the third) matrices in the right-hand side are Vandermond
(and its transposed) matrices, therefore W; is non-singular.

Consider (a unique) polynomial g = X'+ > _;_; e; X" with the roots
M, ..., Ar. Then Wipq - (eo,...,€11,1)T = 0. Hence rank(W; 1) =t
since W;, 1 contains W; as a submatrix in the upper left corner and W;
is non-singular,

Dima Grigoriev (CNRS) (To the memory of Interpolating sparse polynomials 14.03.22 6/9



Generalized Wronskian
Consider the following t x t Wronskian (being a Hankel matrix)

f(c) (D'f)(e) --- (Df)(c)
W, = (D'f)(c) (D*f)(c) ---  (D'f)(c) _
(D) () (D'f)(e) --- (DP'2f)(c)
A9 ui(e) 0 - 0 A /\§—1\
A A] 0 w(c) - 0 PYIRE )\;1

The first (and the third) matrices in the right-hand side are Vandermond
(and its transposed) matrices, therefore W; is non-singular.

Consider (a unique) polynomial g = X'+ > _;_; e; X" with the roots
M, ..., Ar. Then Wipq - (eo,...,€11,1)T = 0. Hence rank(W; 1) =t
since W;, 1 contains W; as a submatrix in the upper left corner and W;
is non-singular, thus (e, ..., e;_1, 1) is the unique (normalized)

solution of a homogeneous linear system W;.1E = 0.
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Interpolation algorithm for sparse eigen-functions

The algorithm (due to G.-Karpinski-Singer) finds

1. (eo,...,€t_1,1) as a solution of a homogeneous linear system;
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Interpolation algorithm for sparse eigen-functions

The algorithm (due to G.-Karpinski-Singer) finds

1. (eo,...,€t_1,1) as a solution of a homogeneous linear system;

2. the roots Aq,..., Ar of polynomial g = X'+ 3o, & X;
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Interpolation algorithm for sparse eigen-functions

The algorithm (due to G.-Karpinski-Singer) finds

1. (eo,...,€t_1,1) as a solution of a homogeneous linear system;
2. the roots Aq,..., Ar of polynomial g = X'+ 3o, & X;

3. u1(c),. .., us(c) from the decomposition of W;.
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Interpolation algorithm for sparse eigen-functions

The algorithm (due to G.-Karpinski-Singer) finds
1. (eo,...,€t_1,1) as a solution of a homogeneous linear system;
2. the roots Ay, ..., Ar of polynomial g = X + 3o, .X;

3. u1(c),. .., us(c) from the decomposition of W;.

This provides the required sparse eigen-functions interpolation
f=u1 4+ U
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Interpolation algorithm for sparse eigen-functions

The algorithm (due to G.-Karpinski-Singer) finds

1. (eo,...,€t_1,1) as a solution of a homogeneous linear system;
2. the roots Ay, ..., Ar of polynomial g = X + 3o, .X;
3. u1(c),. .., us(c) from the decomposition of W;.

This provides the required sparse eigen-functions interpolation

f=us+ -+ us. If such a sparse representation does not exist the
algorithm outputs that it does not exist.
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Applications

Sparse polynomial interpolation in Pochhammer basis

— L = AN
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Applications

Sparse polynomial interpolation in Pochhammer basis

Linear operator (Df)(X) := X(f(X) — f(X — 1)) on the linear space of
polynomials with the Pochhammer basis of the eigen-function of D
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Applications

Sparse polynomial interpolation in Pochhammer basis

Linear operator (Df)(X) := X(f(X) — f(X — 1)) on the linear space of
polynomials with the Pochhammer basis of the eigen-function of D
being ux = X(X —1)(X—-2)--- (X —k+1), k > 0 with eigen-values k.
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Applications

Sparse polynomial interpolation in Pochhammer basis

Linear operator (Df)(X) := X(f(X) — f(X — 1)) on the linear space of
polynomials with the Pochhammer basis of the eigen-function of D
being ux = X(X —1)(X—-2)--- (X —k+1), k > 0 with eigen-values k.

Sparse Fourier decomposition
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Applications

Sparse polynomial interpolation in Pochhammer basis

Linear operator (Df)(X) := X(f(X) — f(X — 1)) on the linear space of
polynomials with the Pochhammer basis of the eigen-function of D
being ux = X(X —1)(X—-2)--- (X —k+1), k > 0 with eigen-values k.

Sparse Fourier decomposition

Linear operator Df := f” acts as the second derivative on the space of
continuous functions with the Fourier basis of eigen-functions
sin(kX), k > 1 of D with eigen-values —k2.
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Applications

Sparse polynomial interpolation in Pochhammer basis

Linear operator (Df)(X) := X(f(X) — f(X — 1)) on the linear space of
polynomials with the Pochhammer basis of the eigen-function of D
being ux = X(X —1)(X—-2)--- (X —k+1), k > 0 with eigen-values k.

Sparse Fourier decomposition

Linear operator Df := f” acts as the second derivative on the space of
continuous functions with the Fourier basis of eigen-functions
sin(kX), k > 1 of D with eigen-values —k2.

Sparse multivariate polynomial interpolation

v
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Applications

Sparse polynomial interpolation in Pochhammer basis

Linear operator (Df)(X) := X(f(X) — f(X — 1)) on the linear space of
polynomials with the Pochhammer basis of the eigen-function of D
being ux = X(X —1)(X—-2)--- (X —k+1), k > 0 with eigen-values k.

Sparse Fourier decomposition

Linear operator Df := f” acts as the second derivative on the space of
continuous functions with the Fourier basis of eigen-functions
sin(kX), k > 1 of D with eigen-values —k2.

Sparse multivariate polynomial interpolation

Linear operator (Df)(Xi,...,Xn) := f(p1 X1, ..., pnXn) Where py,..., pn
are distinct primes,

v
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Applications

Sparse polynomial interpolation in Pochhammer basis

Linear operator (Df)(X) := X(f(X) — f(X — 1)) on the linear space of
polynomials with the Pochhammer basis of the eigen-function of D
being ux = X(X —1)(X—-2)--- (X —k+1), k > 0 with eigen-values k.

Sparse Fourier decomposition

Linear operator Df := f” acts as the second derivative on the space of
continuous functions with the Fourier basis of eigen-functions
sin(kX), k > 1 of D with eigen-values —k2.

Sparse multivariate polynomial interpolation

Linear operator (Df)(X1,...,Xn) :== f(p1X1,...,PnXn) Where py,...,pn
are distinct primes, acts on the space of polynomials with the basis of
eigen-functions of D being monomials Xf‘ -+~ X5" having distinct
eigen-values py* - - - pyr.

v
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Further developments

Interpolation over finite fields
One can interpolate sparse polynomials over finite fields.
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Further developments

Interpolation over finite fields
One can interpolate sparse polynomials over finite fields.

The latter algorithm fails over finite fields since eigen-values pf‘ o4
can coincide for different monomials,
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Further developments

Interpolation over finite fields
One can interpolate sparse polynomials over finite fields.

The latter algorithm fails over finite fields since eigen-values pf‘ o4
can coincide for different monomials, therefore the dimensions of
eigen-spaces can be greater than 1.
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Further developments

Interpolation over finite fields
One can interpolate sparse polynomials over finite fields.

The latter algorithm fails over finite fields since eigen-values pf‘ o4
can coincide for different monomials, therefore the dimensions of
eigen-spaces can be greater than 1.

Interpolation of sparse rational functions

Rational function f is (1, t,)-sparse if f = f; /f, where polynomial f;
(respectively, ) is ti-sparse (respectively, k-sparse).
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Further developments

Interpolation over finite fields

One can interpolate sparse polynomials over finite fields.

The latter algorithm fails over finite fields since eigen-values pf‘ o4

can coincide for different monomials, therefore the dimensions of
eigen-spaces can be greater than 1.

Interpolation of sparse rational functions
Rational function f is (1, t,)-sparse if f = f; /f, where polynomial f;
(respectively, ) is ti-sparse (respectively, k-sparse).

Note that the irreducible representation of a rational function is not
necessary sparse: 1+ X 4+ X2 +--- + X9 = (X9 —1)/(X —1).
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Further developments

Interpolation over finite fields
One can interpolate sparse polynomials over finite fields.
The latter algorithm fails over finite fields since eigen-values pf‘ o

can coincide for different monomials, therefore the dimensions of
eigen-spaces can be greater than 1.

Interpolation of sparse rational functions

Rational function f is (1, t,)-sparse if f = f; /f, where polynomial f;
(respectively, ) is ti-sparse (respectively, k-sparse).

Note that the irreducible representation of a rational function is not
necessary sparse: 1+ X 4+ X2 +--- + X9 = (X9 —1)/(X —1).

For given f, t the interpolation algorithm produces all the
(t1, )-sparse representations of f with t; + &, < t.
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