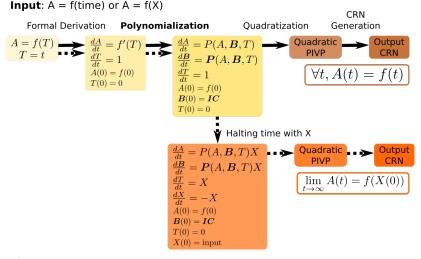
A Symbolic Computation Pipeline to Compile Mathematical Elementary Functions into Chemical Reaction Networks

François Fages joint work with Mathieu Hemery and Sylvain Soliman

Inria Saclay Ile de France, EPI Lifeware: *Computational systems biology and optimization*

CMSB 2021, SIAM AG 2021, CASC 2021

Compilation Pipeline of Mathematical Functions into CRNs



Theorem. (F, Le Guludec, Bournez, Pouly, CMSB 2017) Turing-completeness of finite continuous CRN

Input: $A(t) = \log(1 + t^2)$ PODE: $\frac{dA}{dt} = 2.T.B$ $\frac{dB}{dt} = -2.T.B^2$ $\frac{dT}{dt} = 1$ A(0) = T(0) = 0, B(0) = 1Quadratic ODE: $\frac{dA}{dt} = 2.BT$ $\frac{dB}{dt} = -2.BT.B$ A(0) = 0**Output abstract CRN:** A(0) = BT(0) = 0, B(0) = 1 $BT \xrightarrow{2} A + BT \quad B + BT \xrightarrow{2} BT \quad B \xrightarrow{1} B + BT \quad 2.BT \xrightarrow{2} BT$

Input: $A(t) = \log(1 + t^2)$ **ODE:** $\frac{dA}{dt} = \frac{2t}{1+t^2}$ A(0) = 0 $\begin{array}{ccc} at & 1+t^{-} \\ \text{Introduce } B = \frac{1}{1+t^{2}} & \frac{dB}{dt} = \frac{-2t}{(1+t^{2})^{2}} = -2tB^{2} \\ \end{array} & B(0) = 1 \end{array}$ PODE: $\frac{dA}{dt} = 2.T.B$ $\frac{dB}{dt} = -2.T.B^2$ $\frac{dT}{dt} = 1$ A(0) = T(0) = 0, B(0) = 1Quadratic ODE: $\frac{dA}{dt} = 2.BT$ $\frac{dB}{dt} = -2.BT.B$ A(0) = 0**Output abstract CRN:** A(0) = BT(0) = 0, B(0) = 1 $BT \xrightarrow{2} A + BT \quad B + BT \xrightarrow{2} BT \quad B \xrightarrow{1} B + BT \quad 2.BT \xrightarrow{2} BT$

Input:
$$A(t) = \log(1 + t^2)$$

ODE: $\frac{dA}{dt} = \frac{2t}{1+t^2}$ $A(0) = 0$
Introduce $B = \frac{1}{1+t^2}$: $\frac{dB}{dt} = \frac{-2t}{(1+t^2)^2} = -2tB^2$ $B(0) = 1$
PODE: $\frac{dA}{dt} = 2.T.B$ $\frac{dB}{dt} = -2.T.B^2$ $\frac{dT}{dt} = 1$
 $A(0) = T(0) = 0, B(0) = 1$
Introduce $BT = B.T$ and removing T :
Quadratic ODE: $\frac{dA}{dt} = 2.BT$ $\frac{dB}{dt} = -2.BT.B$ $A(0) = 0$
 $\frac{d(BT)}{dt} = \frac{dB}{dt}.T + B\frac{dT}{t} = -2.BT^2 + B$ $B(0) = 1, BT(0) = 0$
Output abstract CRN: $A(0) = BT(0) = 0, B(0) = 1$
 $BT \xrightarrow{2} A + BT$ $B + BT \xrightarrow{2} BT$ $B \xrightarrow{1} B + BT$ $2.BT \xrightarrow{2} BT$

Input:
$$A(t) = \log(1 + t^2)$$

ODE: $\frac{dA}{dt} = \frac{2t}{1+t^2}$ $A(0) = 0$
Introduce $B = \frac{1}{1+t^2}$: $\frac{dB}{dt} = \frac{-2t}{(1+t^2)^2} = -2tB^2$ $B(0) = 1$
PODE: $\frac{dA}{dt} = 2.T.B$ $\frac{dB}{dt} = -2.T.B^2$ $\frac{dT}{dt} = 1$
 $A(0) = T(0) = 0, B(0) = 1$
Introduce $BT = B.T$ and removing T :
Quadratic ODE: $\frac{dA}{dt} = 2.BT$ $\frac{dB}{dt} = -2.BT.B$ $A(0) = 0$
 $\frac{d(BT)}{dt} = \frac{dB}{dt}.T + B\frac{dT}{t} = -2.BT^2 + B$ $B(0) = 1, BT(0) = 0$
Output abstract CRN: $A(0) = BT(0) = 0, B(0) = 1$
 $BT \stackrel{2}{\to} A + BT$ $B + BT \stackrel{2}{\to} BT$ $B \stackrel{1}{\to} B + BT$ $2.BT \stackrel{2}{\to} BT$

Input: $A(x) = \log(1 + x^2)$ ODE: $\frac{dA}{dt} = X \cdot \frac{2t}{1+t^2}$ $\frac{dX}{dt} = -X$ X(0) = x, A(0) = 0PODE: $\frac{dX}{dt} = -X$ $\frac{dA}{dt} = 2.T.B.X$ $\frac{dB}{dt} = -2.T.B^2.X$ $\frac{dT}{dt} = X$ X(0) = x, A(0) = 0, B(0) = 1, T(0) = 0Quadratic ODE: by introducing BX and TBX variables and by removing T and B

Output abstract CRN:X(0) = BX(0) = xTBX(0) = A(0) = 0 $X \xrightarrow{1} \emptyset$ $BX + X \xrightarrow{1} BX + X + TBX$ $BX \xrightarrow{1} \emptyset$ $BX + TBX \xrightarrow{2} TBX$ $TBX \xrightarrow{1} \emptyset$ $2.TBX \xrightarrow{2} TBX$

<□>
<□>
<□>
<□>

7/16

Example for a Function of some Input Molecular Species

Input:
$$A(x) = \log(1 + x^2)$$

ODE: $\frac{dA}{dt} = X \cdot \frac{2t}{1+t^2}$ $\frac{dX}{dt} = -X$ $X(0) = x, A(0) = 0$
PODE: $\frac{dX}{dt} = -X$ $\frac{dA}{dt} = 2.T.B.X$ $\frac{dB}{dt} = -2.T.B^2.X$ $\frac{dT}{dt} = X$
 $X(0) = x, A(0) = 0, B(0) = 1, T(0) = 0$
Quadratic ODE: by introducing BX and TBX variables
and by removing T and B

Output abstract CRN: X(0) = BX(0) = x TBX(0) = A(0) = 0

$$\begin{array}{ccc} X \xrightarrow{1} \emptyset & BX + X \xrightarrow{1} BX + X + TBX \\ BX \xrightarrow{1} \emptyset & BX + TBX \xrightarrow{2} TBX \\ TBX \xrightarrow{1} \emptyset & 2.TBX \xrightarrow{2} TBX & TBX \xrightarrow{2} A + TBX \end{array}$$

Example for a Function of some Input Molecular Species

Input:
$$A(x) = \log(1 + x^2)$$

ODE: $\frac{dA}{dt} = X \cdot \frac{2t}{1+t^2}$ $\frac{dX}{dt} = -X$ $X(0) = x, A(0) = 0$
PODE: $\frac{dX}{dt} = -X$ $\frac{dA}{dt} = 2.T.B.X$ $\frac{dB}{dt} = -2.T.B^2.X$ $\frac{dT}{dt} = X$
 $X(0) = x, A(0) = 0, B(0) = 1, T(0) = 0$
Quadratic ODE: by introducing BX and TBX variables

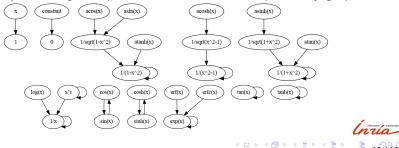
and by removing T and B

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Output abstract CRN: $X(0) = BX(0) = x \quad TBX(0) = A(0) = 0$ $X \xrightarrow{1}{\rightarrow} \emptyset \quad BX + X \xrightarrow{1}{\rightarrow} BX + X + TBX$ $BX \xrightarrow{1}{\rightarrow} \emptyset \quad BX + TBX \xrightarrow{2}{\rightarrow} TBX$ $TBX \xrightarrow{1}{\rightarrow} \emptyset \quad 2.TBX \xrightarrow{2}{\rightarrow} TBX \qquad TBX \xrightarrow{2}{\rightarrow} A + TBX$ **Lemma** Terminates for any finite set F of formally differentiable functions over the reals whenever their derivatives belong to the algebra of F over \mathbb{R} .

Proposition Terminates on elementary functions over the reals, with at most a linear number of introduced variables and quadratic time complexity for linear size derivatives.

Proof 1/x for negative powers and derivatives' dependency graph:



Theorem. Any function generated by a PIVP (polynomial initial value pb) can be generated by a PIVP of degree at most two.

Quadratization algorithm in $O(d^n)$ [Carothers et al. 2005]

Input: PIVP with n variables $\{x_1, \ldots, x_n\}$ max powers d_1, \ldots, d_n

- Introduce $v_{i_1,\ldots,i_n} = x_1^{i_1} x_2^{i_2}, \ldots, x_n^{i_n}$ for all i_j , $0 \le i_j \le d_j$,
- $1 \leq j \leq n$ satisfying $i_k > 0$ for some k
- \bullet Their derivatives can be expressed with monomials of degree at most 2

Output: quadratic PIVP with same output function on original variables $v_{1,0,\ldots,0}(t), \ldots, v_{0,\ldots,0,1}(t)$.

< □ > < @ > < ≥ > < ≥ > < ≥ > < ≥ < 11/16</p>

Quadratic Transformation Problem using Carothers Monomials

QTP input: A PIVP on *n* variables $X = \{x_i\}_{0 \le i \le n-1}$ with a distinguished output variable x_0 .

QTP output: the minimum number k of variables for Carothers monomials $f_j(X)$ such that $\{x_0, f_1(X), \ldots, f_k(X)\}$ defines an equivalent quadratic PIVP for computing output x_0 .

Associated decision problem

QTDP input: QTP input with given number k

QTDP output: existence of a quadratic form using k variables

QTDP input: succinct symbolic representation of PIVP

nsQTDP input: non-succinct representation of PIVP in matrix form containing all Carothers monomials

Proposition. $nsQTDP \in NP. QTDP \in NEXP.$

Theorem. (Hemery F Soliman CMSB 2020) nsQTDP is NP-complete. nsQTP is NP-hard.

Proof. By reduction of the vertex set covering problem.

In symbolic succinct representation:

Conjecture. The QTDP is NEXP-complete. QTP is NEXP-hard

Implementation in BIOCHAM and Evaluation

Quadratization minimizes the number of CRN variables (NP-hard)

- MAXSAT solver (RC2) used either directly (sat_species) or
- after heuristics to restrict the subset of variables (fastnSAT)

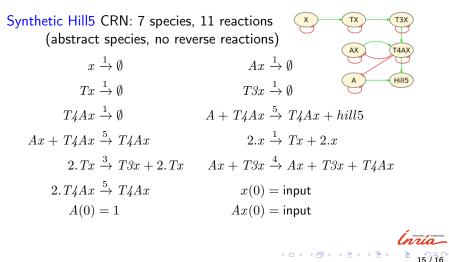
	fastnSAT			<pre>sat_species</pre>		
Function	time (ms)	number of species	number of reactions	time (ms)	number of species	number of reactions
Hill1	80	4	5	85	3	3
Hill2	90	6	10	82	5	8
Hill3	100	6	10	115	6	12
Hill4	100	7	13	162	7	13
Hill5	110	8	16	550	7	11
Hill10	160	13	31	timeou	ıt	
Hill20	380	23	61	timeou	ıt	
Logistic	80	3	5	85	3	5
Double exp.	80	3	4	85	3	4
Gaussian	85	3	4	85	3	4
Logit	95	4	7	100	4	Ínta

▲日 → ▲圖 → ▲ 国 → ▲ 国 → .

æ

Hill5 as a Synthetic Analog of the MAPK Signalling CRN

Natural MAPK CRN: 22 species, 30 reactions, Hill5 [Huang Ferrel 96] (real enzymes, reverse reactions)



Summary and Open Problems

- Pipeline for compiling any elementary function in a finite CRN $O(n^2)$ polynomialization algorithm [Hemery F Soliman CMSB 2021]
- ${\cal O}(d^n)$ quadratization no species minimization [Carothers et al. 2005]

Carothers-minimal quadratization pb [Hemery F Soliman CMSB 2020]:

- NP-complete in non-succinct (matricial) repr.
- conjectured NEXP-complete in succinct (symbolic) repr.
- MAXSAT algorithm minimizing Carothers' monomials
- Heuristics to restrict the set of Carothers monomials
- Optimal monomial quadratization [Bychkov Pogudin IWOCA 2021]
- Branch&bound algorithm
- Carothers' monomials lead to suboptimal solutions
- Better solution with non-monomial quadratization [Alauddin 2021] - no algorithm