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Compilation Pipeline of Mathematical Functions into CRNs

Theorem. (F, Le Guludec, Bournez, Pouly, CMSB 2017)
Turing-completeness of finite continuous CRN
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Example for a Function of Time

Input: A(t) = log(1 + t2)

ODE:
dA

dt
=

2t

1 + t2
A(0) = 0

Introduce B =
1

1 + t2
:
dB

dt
=

−2t
(1 + t2)2

= −2tB2 B(0) = 1

PODE:
dA

dt
= 2.T.B

dB

dt
= −2.T.B2 dT

dt
= 1

A(0) = T (0) = 0, B(0) = 1
Introduce BT = B.T and removing T :

Quadratic ODE:
dA

dt
= 2.BT

dB

dt
= −2.BT.B A(0) = 0

d(BT )

dt
=

dB

dt
.T +B

dT

t
= −2.BT 2+B B(0) = 1, BT (0) = 0

Output abstract CRN: A(0) = BT (0) = 0, B(0) = 1

BT
2−→ A+ BT B + BT

2−→ BT B
1−→ B + BT 2.BT

2−→ BT
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Example for a Function of some Input Molecular Species

Input: A(x) = log(1 + x2)

ODE:
dA

dt
= X.

2t

1 + t2
dX

dt
= −X X(0) = x, A(0) = 0

PODE: dX
dt = −X dA

dt = 2.T.B.X dB
dt = −2.T.B2.X dT

dt = X
X(0) = x, A(0) = 0, B(0) = 1, T (0) = 0

Quadratic ODE: by introducing BX and TBX variables
and by removing T and B

Output abstract CRN:
X(0) = BX (0) = x TBX(0) = A(0) = 0

X
1−→ ∅ BX +X

1−→ BX +X + TBX

BX
1−→ ∅ BX + TBX

2−→ TBX

TBX
1−→ ∅ 2.TBX

2−→ TBX TBX
2−→ A+ TBX
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Polynomialization Algorithm (Hemery F Soliman CMSB 2021)

Lemma Terminates for any finite set F of formally differentiable
functions over the reals whenever their derivatives belong to the
algebra of F over R.

Proposition Terminates on elementary functions over the reals,
with at most a linear number of introduced variables and
quadratic time complexity for linear size derivatives.

Proof 1/x for negative powers and derivatives’ dependency graph:
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Folklore Quadratization Theorem

Theorem. Any function generated by a PIVP (polynomial initial
value pb) can be generated by a PIVP of degree at most two.

Quadratization algorithm in O(dn) [Carothers et al. 2005]

Input: PIVP with n variables {x1, . . . , xn} max powers d1, . . . , dn

• Introduce vi1,...,in = xi11 x
i2
2 , . . . , x

in
n for all ij , 0 ≤ ij ≤ dj ,

1 ≤ j ≤ n satisfying ik > 0 for some k
• Their derivatives can be expressed with monomials of degree at
most 2

Output: quadratic PIVP with same output function on original
variables v1,0,...,0(t), . . . , v0,...,0,1(t).
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Quadratization Minimization Problem:

Quadratic Transformation Problem using Carothers Monomials

QTP input: A PIVP on n variables X = {xi}0≤i≤n−1 with a
distinguished output variable x0.

QTP output: the minimum number k of variables for Carothers
monomials fj(X) such that {x0, f1(X), . . . , fk(X)} defines an
equivalent quadratic PIVP for computing output x0.

Associated decision problem

QTDP input: QTP input with given number k

QTDP output: existence of a quadratic form using k variables
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Complexity of the Quadratization Problem

QTDP input: succinct symbolic representation of PIVP

nsQTDP input: non-succinct representation of PIVP in matrix
form containing all Carothers monomials

Proposition. nsQTDP ∈ NP. QTDP ∈ NEXP.

Theorem. (Hemery F Soliman CMSB 2020)
nsQTDP is NP-complete. nsQTP is NP-hard.

Proof. By reduction of the vertex set covering problem.

In symbolic succinct representation:

Conjecture. The QTDP is NEXP-complete. QTP is NEXP-hard.
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Implementation in BIOCHAM and Evaluation

Quadratization minimizes the number of CRN variables (NP-hard)
• MAXSAT solver (RC2) used either directly (sat_species) or
• after heuristics to restrict the subset of variables (fastnSAT)

fastnSAT sat_species

Function time number of number of time number of number of
(ms) species reactions (ms) species reactions

Hill1 80 4 5 85 3 3
Hill2 90 6 10 82 5 8
Hill3 100 6 10 115 6 12
Hill4 100 7 13 162 7 13
Hill5 110 8 16 550 7 11
Hill10 160 13 31 timeout
Hill20 380 23 61 timeout
Logistic 80 3 5 85 3 5
Double exp. 80 3 4 85 3 4
Gaussian 85 3 4 85 3 4
Logit 95 4 7 100 4 6
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Hill5 as a Synthetic Analog of the MAPK Signalling CRN

Natural MAPK CRN: 22 species, 30 reactions, Hill5 [Huang Ferrel 96]
(real enzymes, reverse reactions)

Synthetic Hill5 CRN: 7 species, 11 reactions
(abstract species, no reverse reactions)

x
1−→ ∅ Ax

1−→ ∅

Tx
1−→ ∅ T3x

1−→ ∅

T4Ax
1−→ ∅ A+ T4Ax

5−→ T4Ax + hill5

Ax + T4Ax
5−→ T4Ax 2.x

1−→ Tx + 2.x

2.Tx
3−→ T3x + 2.Tx Ax + T3x

4−→ Ax + T3x + T4Ax

2.T4Ax
5−→ T4Ax x(0) = input

A(0) = 1 Ax (0) = input
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Summary and Open Problems

• Pipeline for compiling any elementary function in a finite CRN
O(n2) polynomialization algorithm [Hemery F Soliman CMSB 2021]

O(dn) quadratization no species minimization [Carothers et al. 2005]

Carothers-minimal quadratization pb [Hemery F Soliman CMSB 2020]:

− NP-complete in non-succinct (matricial) repr.
− conjectured NEXP-complete in succinct (symbolic) repr.
− MAXSAT algorithm minimizing Carothers’ monomials
− Heuristics to restrict the set of Carothers monomials

• Optimal monomial quadratization [Bychkov Pogudin IWOCA 2021]
− Branch&bound algorithm
− Carothers’ monomials lead to suboptimal solutions

• Better solution with non-monomial quadratization [Alauddin 2021]
− no algorithm
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