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Purpose of the talk

Find a nice/compact form of a fraction

what does nice/compact mean ?

a +
b

c + d
e+f

or
ace + acf + ad + be + bf

ce + cf + d

cx − V1x

k1 + x
− V2x

k2 + x
or

ck1k2x + ck1x
2 + ck2x

2 + cx3 − k2V1x − V1x
2 − k1V2x − V 2

2

(k1 + x)(k2 + x)

Fractions representations

“expanded” form: numerator / denominator

tree/dag: +

a ÷

b +

c . . .

→ suitable for nested fractions
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Why is a compact form interesting ?

A compact form:

is easier to read and understand for a human

takes less memory

may yield a better interval evaluation
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Fractions are underrated ?

many computer algebra algorithms:
operate on polynomials (taking numerators, . . . )
output polynomials
→ Gröbner basis, triangular sets, . . .

Multivariate partial fraction decomposition ?
Stoutemeyr 2009, “Multivariate partial fraction decomposition”
Leinartas 1978 “Factorization of rational functions of several variables into partial
fractions“
Both approaches decompose a fraction as a sum of fractions, but no nested
decomposition is recovered

finding nested/compact forms for fractions seem quite difficult ...
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Demo in Maple
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Decoupling of a multivariate fraction

Definition

let F a fraction of K(X ), where X is a set of variables,

let X1, . . . ,Xp a partition of the set X ,

F can be decoupled w.r.t. to the partition if F can be written as
F = A(F1,F2, . . . ,Fp) where :

A(a1, . . . , ap) is a tree with nodes +, × and ÷,
each ai appears at most once (at a leaf),
each Fi is a fraction in Xi .

Example

X = {c,V1, k1,V2, k2}, K = Q(x), F = cx − V1x
k1+x
− V2x

k2+x
can decoupled w.r.t. the

partition {c}, {V1}, {k1}, {V2}, {k2}:

F = +

F1 ÷

F2 F3

÷

F4 F5

with
F1 = cx

F2 = −V1x

F3 = k1 + x

F4 = −V2x

F5 = k2 + x .
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Decoupling of a multivariate fraction

Properties

for each fraction F , there exists a (unique) finest partition for decoupling F

there is no uniqueness for the tree A and the Fi ’s

Interest

The more decoupled the fraction is:

the shorter/more compact/nicer the fraction should look

the better the interval evaluation should be
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Example: better ”looking” equations

(Example 4 of the paper, self-regulated gene)

H ′(t) = −G ′(t) =
a((fM(t)− Vp)P(t) + fkpM(t))G(t)

(aG(t) + aP(t) + b)(kp + P(t))
,

M ′(t) =
(eG(t)− Vm)M(t) + ekmG(t)

km + M(t)
,

P ′(t) =
((fM(t)− Vp)P(t) + fkpM(t))(aP(t) + b)

(aG(t) + aP(t) + b)(kp + P(t))
·

becomes

H ′(t) = −G ′(t) =

fM(t)− VpP(t)

kp + P(t)

1 +
b
a

+ P(t)

G(t)

M ′(t) = − Vm

km
M(t)

+ 1
+ eG(t) P ′(t) =

fM(t)− VpP(t)

kpP(t)

1 +
G(t)

P(t)
(

1 + b
aP(t)

) ·
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Example: better interval evaluation

(Example 5 of the paper)

F =

a0 + a1

b1+
a2

b2+a3

c0 + c1

d1+
c2

d2+c3

+

e0 + e1

f1+
e2

f2+e3

g0 + g1

h1+
g2

h2+g3

developing F yields P/Q with P and Q of degree 10, and more than 200 monomials

our algorithm retrieves F (up to some signs) from P/Q

if each variables lies in the interval [1.0, 5.0],

the fraction P/Q yields the interval [0.140× 10−5, 0.284× 107]
the decoupled form yields [0.237, 16.8].

Note: this is of course an extreme case scenario
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A simple recursive algorithm

decouple(F ,X ), where F ∈ K(X )

if F cannot be decoupled for any partition of X then
return F

else
find a partition (Y ,Z) of X such that F can written as A(G(Y ),H(Z))
call decouple(G ,Y ) and decouple(H,Z) and build the result

How to find the partition (Y ,Z) ?
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Central theorem

If a fraction F ∈ K(X ) can be decoupled w.r.t. a partition (Y ,Z) of X , then F can be
written as one the following form:

C1 G(Y ) + H(Z)

C2 c + G(Y )H(Z)

C3 c +
1

G(Y ) + H(Z)

C4 c +
d

1 + G(Y )H(Z)
with

where c and d are in (almost!) K , and d 6= 0.

the four cases are exclusive

cases C1 and C2 are sufficient if F is a polynomial

case C1 amounts to a simple graph traversal

cases C2,C3,C4 are more difficult: the constants c and d are computed if they exist,
but how ?
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Case C2 with differential algebra !

Assume

f (x , y) = c + g(x)h(y), with c constant

x and y are scalar

f , g and h are smooth enough

fxy is not the zero function

Then c = f − fx fy
fxy

With DifferentialAlgebra (Maple package by François Boulier)

Eliminate g and h in the following system

f = c + gh (1)

cx = cy = 0 (2)

gy = 0 (3)

hx = 0 (4)
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Case C4 may take you outside the base field K

Over K = Q(a), the fraction p = xy+a
x+y

in K(x , y) can be decoupled w.r.t. {x}, {y}:

−
√
a +

2
√
a

1 +

(
1− 2

√
a

x +
√
a

)(
−1 +

2
√
a

y +
√
a

)

if you plug a = 2, then K = Q and you get a
√

2

if you plug a = −1, then K = Q and you get a complex I

no escape is possible ... reason: the constants c and d (case C4) are solutions of a
second order equation

you sometimes need to take radicals to decouple a fraction (this was quite surprising)
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Conclusion

the code requires some heuristics to avoid too many differentiations (many
evaluations tricks are used)

the complexity is polynomial in the number of operations on fractions
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