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Objectives

Existence, (Non)Uniqueness and Regularity
of Solutions

of an Initial Value Problem

u(x) = u, u′(x) = u′

for a Second Order ODE of Type

g(x)u′′ = f (x , u, u′)

with x a zero of g(x).

Two Cases:
Initial condition x is a simple or a double zero of g(x)

Why relevant for Symbiont?

Connection between quasi-linear systems
A(u)u′ = F (u)

and singular pertubation problems
u′ = f (u, v , ε), εv ′ = g(u, v , ε)



An Analytic View

Theorem (Liang 2009)
Let g(x) = x and set γ = fu′ (0, u, u′), k = dγe
I γ < 0 ⇒ unique solution u ∈ C∞([0, δ]) for some δ > 0.

I γ > 0 ⇒ ∃u(2), . . . , u(k) ∈ R (uniquely determined by u, u′, f ): for every solution

lim
x→0+

1

xγ

(
u′(x)−

k∑
j=1

u(k)x j−1

(j − 1)!

)
exists, each solution uniquely determined by limit; one solution smooth, all others
in C k \ C k+1.

I γ ∈ N ⇒ additional logarithmic term and either all solutions are smooth or all in
C k \ C k+1 (”resonance”).

Theorem (Brunovsky, Cerny, Winkler 2013)

x2u′′ = axu′ + bu − c(u′ − 1)2, x ∈ (0, x0)

with a, b ∈ R, c > 0 and initial condition u(0) = 0.

I a + b < 0 ⇒ no continuous solutions exist

I a + b > 0 ⇒ infinitely many continuous solutions exist;
unique solution u corresp. to the choice x0 =∞ with 0 ≤ u(x) ≤ x for all x > 0
and u is strictly increasing and concave.



The Geometry of ODEs

1. Jet bundle Jq the set of all equivalence classes [φ]
(q)
x of smooth functions

φ : R→ R with the same Taylor expansion at x up to order q

2. Coordinates (x , u, u′, . . . , u(q))

3. Natural projection πq
r : Jq → Jr for q > r and πq : J → R.

4. The contact distribution C(q): It is spanned by the two vector fields

C (q) = ∂x + u(1)∂u + · · ·+ u(q)∂u(q−1) (transversal)

and Cq = ∂u(q) (vertical)

5. Identify a scalar qth-order differential equation F = 0 as a submanifold Rq ⊆ Jq
6. Vessiot space Vρ[Rq ] = TρRq ∩ C(q)|ρ at ρ ∈ Rq .

Computation: Every X ∈ Vρ[Rq ] has a representation as

X = aC (q)|ρ + bCq |ρ

where a, b are the solutions of

C (q)(F )(ρ)a + Cq(F )(ρ)b = 0



Example Sphere

Consider the equation
F = u′2 + u2 + x2 − 1 = 0

in J1 with contact disrtibution C (1) = ∂x + u′∂u and C1 = ∂u′ .



Example Sphere

Vessiot distribution:

aC (2)(F ) + bC2(F ) = a(2x + 2uu′) + b2u′ = 0

 X = u′∂x + u′2∂u − (x + uu′)∂u′



Solutions

1. Identify a function φ : R→ R with its section σ : R→ R2 where
σ(x) = (x , φ(x)).

2. Prolonged section

jqσφ : R→ Jq , x 7→ (x , φ(x), φ′(x), . . . , φ(q)(x)).

3. A function φ is a strong solution of Rq if jqσφ ⊆ Rq

4. A generalised solution is a one dimensional integral manifold N ⊆ Rq of V[Rq ].

5. A generalised solution is proper if there does not exist x such that
N ⊆ (πq)−1(x).

6. The projection πq
0 (N ) ⊂ J0 of a proper generalised solution is called a geometric

solution.



Singularities

Two Types of Singularities:

Definition
Let ρ be a smooth point of Rq .

1. If dim(Vρ[Rq ]) > 1, then ρ is called an irregular singularity.

2. If dim(Vρ[Rq ]) = 1 and Vρ[Rq ] is vertical, then ρ is called a regular singularity.

3. Otherwise ρ is called regular.



Examples Singularities and Solutions



No Irregular Singularities

Theorem
Let Rq ⊂ Jq be a scalar ordinary differential equation such that at every ρ ∈ Rq the
Vessiot space Vρ[Rq ] is one-dimensional.

1. If ρ is regular, then ∃1 strong (two sided) solution σ with ρ ∈ im(jqσ).

2. If ρ is regular singular, then either two strong one sided solutions σ1, σ2 with
σi ∈ imjqσi exist or only one strong two-sided solution exists whose (q + 1)th
derivative blows up at x = πq(ρ).



Prolongation

Recall: Rq is defined by the zero set of the function F : Jq → R.
The first prolongation Rq+1 ⊆ Jq+1 is the zero set defined by F and the function

DxF = C (q)(F ) + Cq(F )u(q+1) : Jq+1 → R

Proposition
Let Fq+1 = (πq+1

q )(ρq) ∩Rq+1 be the fibre of a point ρq ∈ Rq in the first
prolongation Rq+1.

1. If ρq is regular, then Fq+1 6= ∅ and consists of regular points of Rq+1.

2. If ρq is regular singular, then Fq+1 = ∅.
3. If ρq is irregular singular, then Fq+1 6= ∅ and consists of singular points of Rq+1.



Quasi-Linear Equations

We consider now quasi-linear equations type

g(x , uq−1)u(q) = f (x , uq−1).

Equation determining the Vessiot space at a point ρ = (x , uq−1) ∈ Rq becomes

[C (q)(g)(ρ)u(q) − C (q)(f )(ρ)]a + g(ρ)b = 0

⇒ a point ρ is singular if g(ρ) = 0 (independent of u(q)) and it is irregular singular if
and only if in addition

C (q)(g)(ρ)u(q) − C (q)(f )(ρ) = 0.

The Vessiot space is

X = g(x , uq−1)C (q) − [C (q)(g(x , uq−1))u(q) − C (q)(f (x , uq−1))]Cq .



Key Property

Key Property of Quasi-linear Differential Equations:
X is πq

q−1-projectable to

Y = g(x , uq−1)C (q−1) + f (x , uq−1)Cq−1.

Assumption: Y is continueable to all of Jq−1.

Definition
1. A point ρ̃q−1 ∈ Jq−1 is called impasse point for Rq ⊆ Jq ⇐⇒ Y is not

transversal to π(q−1) at ρ̃q−1 (∂x -component vanishes)

2. An impasse point ρ̃q−1 ∈ Jq−1 is called proper ⇐⇒ Y vanishes at ρ̃q−1.
Otherwise it is called improper.

The local analysis of proper impasse points reduces to the study of the stationary
points of the vector field Y .



Impasse Points of Quasi-Linear Equations

Definition
1. A one-dimensional invariant manifold of Y is called a weak generalised solution.

2. The πq−1
0 -projection of a weak generalised solution is called a weak geometric

solution.

No guarantee that qth derivative exists  generally not related to a classical solution



First Type of Quasi-Linear Equations

Problem 1:
For a quasi-linear differential equation of type

g(x)u′′ = f (x , u, u′)

we consider the singular initial value problem ρ1 = (x , u0, u1) where f (ρ1) = 0 and x
is a simple zero of g(x).



Prolonged Equations and Vessiot Distribution

For q > 2 compute recursively the prolonged equations Rq defined by F2, . . . ,Fq−1

and

Fq(x , u(q)) = g(x)u(q) + [(q − 2)g ′(x)− fu′ (x , u, u
′)]u(q−1) − hq(x , u(q−2))

where

h3(x , u(1)) = C (1)
(
f (x , u, u′)

)
hq(x , u(q−2)) = C (q−2)

(
hq−1(x , u(q−3))− [(q − 3)g ′(x)− fu′ (x , u, u

′)]u(q−2)
)

On the prolonged equations Rq the Vessiot distribution is given by

X (q) = g(x)C (q) +
(
[(q − 1)g ′(x)− fu′ (x , u, u

′)]u(q) − hq+1(x , uq−1)
)
Cq

Singularities: ρq = (x , u, u′, ..., u(q)) ∈ Rq

1. regular singularity ⇐⇒ g(x) = 0

2. irregular singularity ⇐⇒ g(x) = 0 and [g ′(x)− fu′ (ρ1)]u(q) = hq+1(ρq−1)

where πq
i (ρq) = ρi for i = q − 1 and i = 1.



The Dynamical System

The Projected Vessiot distribution is

Y (q−1) = g(x)C (q−1) +
(
hq(x , u(q−2))− [(q − 2)g ′(x)− fu′ (x , u(1))]u(q−1)

)
Cq−1

For our singular initial values ρ1 = (x , u, u′) all points

ρq = (x , uq) ∈ Rq ∩ (πq
1 )−1(ρ1)

are singular too and the projection ρq−1 = πq
q−1(ρq) ∈ Rq−1 is a proper impasse

point of Rq

 analyse the local phase portrait of Y (q−1) at ρq−1



The Jacobian at the Singularity

We set δ = g ′(x) and γ = fu′ (ρ1) and assume wlog that δ > 0.

At ρq−1 = (x , u0, . . . , uq−1) the Jacobian of Y (q−1) is

J(q−1) =


δ 0 · · · 0
δu1 0 · · · 0

...
...

...
δuq−1 0 · · · 0
a0 · · · aq−1 γ − (q − 2)δ


with eigenvalues δ, 0 ((q-1) times) and γ − (q − 2)δ.

Rq−1 is a 3-dimensional manifold  

δ, 0 and γ − (q − 2)δ
are the relevant eigenvalues



Resonance

Definition
We say that the initial value problem at ρ1 has a resonance at order k ∈ N, if

kδ = γ.

In this case at any point ρk ∈ (πk
1 )−1(ρ1) above ρ1 we call Ak = hk+2(ρk ) the

resonance parameter. The resonance is critical at ρk if Ak 6= 0 and smooth if Ak = 0.

Proposition
Let ρq ∈ Rq be an irregular singularity and let Fq+1 = (π

(q+1)
q )−1(ρq) be the fibre.

1. Then Fq+1 ⊂ Rq+1

2. If ρ1 is not in resonance at order q, then Fq+1 contains exactly one irregular
singularity.

3. If ρ1 is in

{
critical
smooth

}
resonance at order q, then Fq+1 consists entirely of{

regular
irregular

}
singularity.



Eigenvectors

Eigenvectors of J(q−1):

Without resonance:

I eγ−(q−2)δ = (0, . . . , 0, 1)T tangential to the fibre

I eδ = (1, u′, . . . , u(q−1),
−hq+1(ρq−1)

γ−(q−1)δ
)T transversal to πq−1

I e0 is tangential to the curve of proper impasse points

Resonance at order q − 1: (Generalised) Eigenspace generated by

e1 = (0, . . . , 0, 1)T and e2 = (1, u′, . . . , u(q−1), 0)T

I Resonance smooth: e1 and e2 are proper eigenvectors

I Resonance critical: e1 proper and e2 generalised eigenvector



The Case Without Resonance

Theorem
Assume that at no order a resonance appears.

1. If δγ < 0, then the corresponding initial value problem possesses a unique
two-sided smooth solution and no additional one-sided solutions.

2. If δγ > 0, then there exists a one-parameter family of two-sided solutions. One of
these solutions is smooth; the other ones are in Ck \ Ck+1 with k = dγ/δe. All of

these solutions possess the same Taylor polynomial
∑k

i=0
ui
i!

(x − x)i of degree k
around x.



The Case of γ = 0

Theorem
Assume that γ = 0. Then there exists a unique smooth two-sided solution (and
possibly further one-sided solutions).



The Case of Resonance

Theorem
Assume that a resonance occurs at the order k > 0. There exists a one-parameter
family of two-sided solutions all possessing the same Taylor polynomial∑k

i=0
ui
i!

(x − x)i of degree k around x. In the case of a smooth resonance, all of these
solutions are smooth and each is uniquely determined by the value of its (k + 1)st
derivative in x. In the case of a critical resonance, all solutions live in Ck \ Ck+1.



Brunovsky

Problem 2:
For the quasi-linear differential equation

x2u′′ = axu′ + bu − c(u′ − 1)2

we consider the singular initial value problem ρ1 = (x , u0, u1) = (0, 0, 1) with are real
parameters a, b, c ∈ R.

Joint work with Peter Szmolyan



The Case b, c are nonzero and a 6= −b

The projected Vessiot distribution is

Y = x2∂x + x2u′∂u + (axu′ + bu − c(v − 1)2)∂u′ .

The set of stationary points is given by the parabola

u =
c

b
(u′ − 1)2

and the Jacobian has at ρ1 triple eigenvalue zero.

⇒ desingularise the stationary point ρ1 with a blow-up

Consider the transformed system

(b(ay1y3 − cy2
1 ) + y2)∂y1 + (by2

3 (b2y1 + a + b))∂y2 + by2
3 ∂y3

with Jacobian 0 1 0
0 0 0
0 0 0


at the origin.



The Case b, c are nonzero and a 6= −b

Blow-up in positive and negative y1 direction:

Stationary points:
s1 = (0, 0, 0), s2 = (0, bc, 0) (later)

J(s1) =

−bc/2 0 0
0 2bc 0
0 0 3bc/2


s1 repelling/attracting node
y1 direction attracting/repelling

Stationary points:
s3 = (0, bc, 0), s4 = (0, 0, 0) (later)

J(s4) =

bc/2 0 0
0 −2bc 0
0 0 −3bc/2


s4 attracting/repelling node
y1 direction repelling/attracting



The Case b, c are nonzero and a 6= −b



The Case b, c are nonzero and a 6= −b
Blow up in positive y2 direction (negative analogously):

Stationary points

s2 = (α, 0, 0) and s3 = (−α, 0, 0) with α =
√

1
bc

with Jacobians

J(s2) =

−2bcα 0 0
0 0 0
0 0 0

 and J(s3) =

2bcα 0 0
0 0 0
0 0 0

 .

Lemma
1. Let a + b 6= 0 and bc < 0. Then in the chart for the positive y2-direction there

are no real stationary points on the plane {y2 = 0}.
2. Let a + b 6= 0 and bc > 0. Then in the chart for the positive y2-direction we find

on the plane {y2 = 0} the two stationary points

s2 = (α, 0, 0) and s3 = (−α, 0, 0).

On the plane {y2 = 0} they show the following dynamical behaviour:

2.1 For b(a + b) > 0 the point s2 is an attracting node and s3 is a saddle.

2.2 For b(a + b) < 0 the point s2 is a saddle and s3 is a repelling node.



The Case b, c are nonzero and a 6= −b



The Case b, c are nonzero and a 6= −b

At s2 and s3 the Jacobians have double eigenvalue zero

⇒ Compute center manifolds and their dynamics

Lemma
On the center manifold C(s2)/C(s3) the point s2/s3 is a saddle point. On the
halfspace {y2 ≥ 0} we have the following dynamics on C(s2)/C(s3):

1. a + b > 0, b > 0: attracting
directions ±(0, 0, 1)tr and repelling
direction (0, a + b, 1)tr .

2. a + b > 0, b < 0: repelling
directions ±(0, 0, 1)tr and
attracting direction (0, a + b, 1)tr .

3. a + b < 0, b > 0: repelling
directions ±(0, 0, 1)tr and
attracting direction
−(0, a + b, 1)tr .

4. a + b < 0, b < 0: attracting
directions ±(0, 0, 1)tr and repelling
direction −(0, a + b, 1)tr .

1. a + b > 0, b > 0: attracting
directions ±(0, 0, 1)tr and repelling
direction (0, a + b, 1)tr .

2. a + b > 0, b < 0: repelling
directions ±(0, 0, 1)tr and
attracting direction (0, a + b, 1)tr .

3. a + b < 0, b > 0: repelling
directions ±(0, 0, 1)tr and
attracting direction
−(0, a + b, 1)tr .

4. a + b < 0, b < 0: attracting
directions ±(0, 0, 1)tr and repelling
direction −(0, a + b, 1)tr .



The Case b, c are nonzero and a 6= −b



The Case b, c are nonzero and a 6= −b

Putting it together

⇒ the stationary point is a saddle node


