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Introduction

Reaction Network and Multistationarity.

Representation of parameter regions.

Superlevel sets.

Superlevel set representation of the multistationarity region.

Comparison with the other representations.

More algorithms and discussions.
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Gene regulatory networks

How does a gene get expressed?
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An example of gene regulatory network

d [A](t)

dt
= kA,max ·

1

1 + kA,C [C ](t)
− kA,d [A](t)

d [B](t)

dt
= kB,max ·

kB,A[A](t)

1 + kB,A[A](t)
− kB,d [B](t)

d [C ](t)

dt
= kC ,max ·

kC ,A[A](t)

1 + kC ,A[A](t)
·

kC ,B [B](t)

1 + kC ,B [B](t)
− kC ,d [C ](t)
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An example of gene regulatory network

ẋ1 = k1 ·
1

1 + k2x3
− k3x1

ẋ2 = k4 ·
k5x1

1 + k5x1
− k6x2

ẋ3 = k7 ·
k8x1

1 + k8x1
· k9x2

1 + k9x2
− k10x3
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An example of gene regulatory network

k1 ·
1

1 + k2x3
− k3x1 = 0

k4 ·
k5x1

1 + k5x1
− k6x2 = 0

k7 ·
k8x1

1 + k8x1
· k9x2

1 + k9x2
− k10x3 = 0
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An example of gene regulatory network

k1 ·
1

1 + k2x3
− k3x1 = 0

k4 ·
k5x1

1 + k5x1
− k6x2 = 0

k7 ·
k8x1

1 + k8x1
· k9x2

1 + k9x2
− k10x3 = 0

This is an open network because of the degradation reactions.
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An example of a closed network

2O −
2 + 2H+ k−−→ O2 + H2O2

ẋ1 = −2kx21x
2
2 ,

ẋ2 = −2kx21x
2
2 ,

ẋ3 = kx21x
2
2 ,

ẋ4 = kx21x
2
2 .
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An example of a closed network

2O −
2 + 2H+ k−−→ O2 + H2O2

ẋ1 = −2kx21x
2
2 ,

ẋ2 − ẋ1 = 0,
ẋ1 + 2ẋ3 = 0,
ẋ1 + 2ẋ4 = 0.
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An example of a closed network

2O −
2 + 2H+ k−−→ O2 + H2O2

ẋ1 = −2kx21x
2
2 ,

x2 − x1 = T1,
x1 + 2x3 = T2,
x1 + 2x4 = T3.

A closed network has at least one conservation law, for example since
nothing is allowed to go out or come in, the total mass should be
conserved.
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An example of a closed network

2O −
2 + 2H+ k−−→ O2 + H2O2

ẋ1 = −2kx21x
2
2 ,

x2 + 2x3 = T1,
x1 + 2x3 = T2,
x1 + 2x4 = T3.

It is preferred to have positive coefficients in the conservation laws. Which
is always possible. For example by summing the relation with a suitable
scalar multiple of the previous mentioned trivial relation.
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An example of a partially open network

X
k1−−→ X + P

P
k2−−→ 0

2P
k3−−⇀↽−−
k4

PP

X + PP
k5−−⇀↽−−
k6

XPP

XPP
k7−−→ XPP + P

dx1
dt = −k5x1x3 + k6x4,
dx2
dt = k1x1 − k2x2 − 2k3x

2
2 + 2k4x3 + k7x4,

dx3
dt = k3x

2
2 − k4x3 − k5x1x3 + k6x4,

dx4
dt = k5x1x3 − k6x4.
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An example of a partially open network

X
k1−−→ X + P

P
k2−−→ 0

2P
k3−−⇀↽−−
k4

PP

X + PP
k5−−⇀↽−−
k6

XPP

XPP
k7−−→ XPP + P

−k5x1x3 + k6x4 = 0,
k1x1 − k2x2 − 2k3x

2
2 + 2k4x3 + k7x4 = 0,

k3x
2
2 − k4x3 − k5x1x3 + k6x4 = 0,

x1 + x4 = k8.
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Multistationarity

Definition

Consider a network with n species. Replace redundant steady state
equations by conservation laws if there exist any. Let k stands for the
vector of constants of both the reaction rates and conservation laws and
be of the size r . A network is called multistationary over B ⊆ Rr if there
exists a k ∈ B such that fk(x) = 0 has more than one solution in Rn

>0.
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Multistationarity

Definition

Consider a network with n species. Replace redundant steady state
equations by conservation laws if there exist any. Let k stands for the
vector of constants of both the reaction rates and conservation laws and
be of the size r . A network is called multistationary over B ⊆ Rr if there
exists a k ∈ B such that fk(x) = 0 has more than one solution in Rn

>0.

The set {k ∈ B | #
(
f −1k (0) ∩ Rn

>0

)
≥ 2} is called the multistationarity

region of the network.
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Finding, representing and storing mult. region

CAD representation

How to find? Use CAD of the parameter space with respect to the
discriminant variety.
How to represent? As a semialgebraic set.
How to store? Saving a list of CAD cells.
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Finding, representing and storing mult. region

Sampling representation

How to find? Solve the system at many sample points.
How to represent? With a finite subset of it.
How to store? Saving a list of points.

0.0005 0.0006 0.0007 0.0008 0.0009 0.001
0

0.5

1

1.5

2
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Finding, representing and storing mult. region

Rectangular representation

How to find? Partition the region to smaller regions. Solve the system for
many sample points from the subregions and associate the average
number to each subregion.
How to represent? With a union of hyperrectangles.
How to store? Saving a list of hyperrrectangles.

0.0005 0.0006 0.0007 0.0008 0.0009 0.001
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0.5
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Finding, representing and storing mult. region

Rectangular representation

Remark: One can get the rectangular representation via Kac-Rice
integrals. See reference no. 3.
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Superlevel sets

Definition

Consider an arbitrary function f : Rn → R. For a given u ∈ R a superlevel
set of f is the set of the form

Uu(f ) = {x ∈ Rn | f (x) ≥ u}.

When u = 1 we drop the index and only write U(f ). Naturally, a
polynomial superlevel set is a superlevel set of a polynomial.
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Superlevel sets

Theorem [reference no. 2]

Let B ⊆ Rn be a compact set and K a closed subset of B. For d ∈ N
define

Sd = {p ∈ Pd | p ≥ 0 on B, p ≥ 1 on K}.

Then there exists a polynomial pd ∈ Sd such that∫
B
pd(x)dx = inf

{∫
B
p(x)dx | p ∈ Sd

}
.

Furthermore limd→∞Vol(U(pd)− K ) = 0.
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How to compute a superlevel set

If p(x) =
∑

α∈Nn
d
cαx

α where Nn
d is the set of α = (α1, . . . , αn) ∈ Zn

≥0
such that

∑n
i=1 αi ≤ d , then∫

B
p(x)dx =

∫
B

( ∑
α∈Nn

d

cαx
α
)
dx =

∑
α∈Nn

d

cα

∫
B
xαdx =

∑
α∈Nn

d

( ∫
B
xαdx

)
cα.

Let B be a hyperrectangle defined by
∏n

j=1[aj , bj ]. Then p(x) being
positive on B can be guaranteed by finding sum of squares polynomials s0,
s1, ..., sn such that

p(x)−
n∑

j=1

sj(x)(xj − aj)(bj − xj) = s0(x).
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How to compute a superlevel set

Implementation

A PSS (Polynomial Superlevel Set) representation can be obtained by
solving a minimization problem with linear target function and SOS (Sum
of Squares polynomial) constraints using YALMIP + SeDuMi packages of
MatLab.
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How to compute a superlevel set

Implementation

Instead of a rectangular representation, one can use a sampling
representation and convert the SOS constraints to linear constraints or a
mixture of the two.
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How to compute a superlevel set

Be careful when using YALMIP

YALMIP usually finishes the computations with a message ‘Numerical
problems (SeDuMi)’. One way to help YALMIP is to rescale the problem
to the unit cube. Compare the following results with the previous ones.
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Finding, representing and storing mult. region

Pros and cons of each method

CAD has high complexity, only applicable for very small examples.

Hard to infer geometry of the mult. region from sampling and
rectangular representations for dimensions higher than 3.

Saving a single polynomial may take less space than a large set of
points or large set of hyperrectangles and may be easier to use for
membership test of a point to the region, or finding distance of a
point from the boundary of the region.
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Using bisection approaches

Do we need to have all hyperrectangles in a rectangular representation to
be of the same size?
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Using bisection approaches

Consider the following example. This system has 1 or 3 positive solutions
for a generic choice of a parameter point.

X1
k1−−→ X2

k2−−→ X3
k3−−→ X4

X3 + X5
k4−−→ X1 + X6

X4 + X5
k5−−→ X2 + X6

X6
k6−−→ X5

k4x3x5 − k1x1 = 0
k5x4x5 + k1x1 − k2x2 = 0
−k4x3x5 + k2x2 − k3x3 = 0
−k4x3x5 − k5x4x5 + k6x6 = 0
x1 + x2 + x3 + x4 − k7 = 0
x5 + x6 − k8 = 0
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Using bisection approaches
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Cases with more than 2 generic possibilities

Lemma

Let B ⊆ Rr be a hyperrectangle and g : B → {n1, . . . , ns} ⊆ Z≥0. Assume
that E

(
g(k) | k ∼ U(B)

)
= ni for some i ∈ {1, . . . , s}. Then with

probability one we have that B is almost subset of Lni (g) if and only if
E
(
g(k) | k ∼ q

)
= ni for a randomly chosen distribution q on B with the

same zero measure sets as Lebesgue measure’s.
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Cases with more than 2 generic possibilities

proof

Nota that;

E
(
g(k) | k ∼ U(B)

)
=

s∑
i=1

ni
Vol
(
B ∩ Lni (g)

)
Vol(B)

,

Vol
(
B ∩ Lni (g)

)
= 0⇐⇒ ∀q :

∫
B∩Lni (g)

q(x)dx = 0.

Now consider the two following sets;

T1 = {(x1, . . . , xt) ∈ (0, 1)t | x1 + · · ·+ xt = 1},
T2 = {(x1, . . . , xt) ∈ (0, 1)t | x1 + · · ·+ xt = 1, nα1x1 + · · ·+ nαtxt = ni},

where t is the number of non-zero volume regions.
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Trying Lemma on an example

Example of section 2.3 of reference no. 3

The example is related to a parametric system of polynomial equations
with 1 variable and two parameters. The possible number of positive real
solutions to the system are 0, 1, 2, 3, 4 and 5. The average number of
solutions on the rectangle [2, 2.5]× [2, 2.5] when parameters are coming
from uniform distribution is 2. But if this rectangle is not inside the
parameter region with 2 solutions. It has almost equal intersection with
the regions with 1 and 3 solutions.
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Trying Lemma on an example

Example of section 2.3 of reference no. 3

Using MCKR app, the expected number of solutions when parameters are
equipped with truncated normal distribution with mean 2.25, and variance
0.1 is 1.8 and hence by Lemma, the fact that this rectangle is not inside
the region with 2 solutions can be observed.
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