

Faculty of Science

Monomial parametrizations for the steady states of Chemical Reaction Networks

Elisenda Feliu (join with Oskar Henriksson) Work in progress

Department of Mathematical Sciences University of Copenhagen

Setting

• Reaction network:

$$X_1 \xrightarrow{\kappa_1} X_2 \qquad 2X_2 \xrightarrow{\kappa_2} 2X_1 \qquad X_1 + X_2 \xrightarrow{\kappa_3} 2X_2$$

• Dynamical system: (x_i = concentration of species X_i)

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 2 & -1 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} \kappa_1 x_1 \\ \kappa_2 x_2^2 \\ \kappa_3 x_1 x_2 \end{bmatrix},$$
$$\dot{x} = N(\kappa \circ x^B), \quad x \in \mathbb{R}_{\geq 0}^n, \quad B, N \in \mathbb{R}^{n \times r}, \quad \kappa \in \mathbb{R}_{> 0}^r$$

N = stoichiometric matrix, κ_j > 0 reaction rate constant, (κ ∘ x^B) mass-action kinetics.
Stoichiometric compatibility classes:

$$x_1 + x_2 = c,$$
 $Wx = c,$ $x \in \mathbb{R}_{>0}^n$

W = matrix with rows a basis of the left kernel of N, ker $(N^{T}) = Im(N)^{\perp}$.

 $(W\dot{x} = 0$ and trajectories are confined to Wx = c, with c depending on the initial condition.)

 Multistationarity: More than one steady state (solution to N(κ ∘ x^B) = 0) in some stoichiometric compatibility class.

Monomial parametrizations

Consider the set of steady states

$$V_{\kappa} = \{ x \in \mathbb{R}^n_{>0} | N(\kappa \circ x^B) = 0 \}, \qquad N \in \mathbb{R}^{n \times r}, B \in \mathbb{R}^{n \times r}.$$

Question: Does V_{κ} admit a monomial parametrization for all κ , with the same exponent matrix $A \in \mathbb{Z}^{d \times n}$?

$$\boldsymbol{V}_{\kappa} = \boldsymbol{x}_{\kappa}^* \circ \boldsymbol{X}_{\mathcal{A}} := \{ \boldsymbol{x}_{\kappa}^* \circ \boldsymbol{t}^{\mathcal{A}} \mid \boldsymbol{t} \in \mathbb{R}_{>0}^d \},\$$

where

$$(t^A)_j = \prod_{i=1}^d t_i^{a_{ij}}, \qquad x^*_\kappa \in V_\kappa.$$

Equivalently:

If we let $V_{\kappa,\mathbb{C}}$ denote the complex variety defined by the steady state equations, we want to determine when $V_{\kappa,\mathbb{C}}$ has only one irreducible component intersecting $\mathbb{R}^n_{>0}$, which is toric (defined by binomial equations).

Example

The IDHKP-IDH system in bacterial cells from Shinar-Feinberg:

$$X_1 + X_2 \xrightarrow[\kappa_2]{\kappa_1} X_3 \xrightarrow[\kappa_3]{\kappa_3} X_1 + X_4 \qquad X_3 + X_4 \xrightarrow[\kappa_5]{\kappa_4} X_5 \xrightarrow[\kappa_6]{\kappa_6} X_3 + X_2$$

We have

$$N = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 1 \\ 1 & -1 & -1 & -1 & 1 & 1 \\ 0 & 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & -1 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

Monomial parametrization:

$$x_{1} = t_{1}, \quad x_{2} = t_{2}, \quad x_{3} = \frac{\kappa_{1}}{\kappa_{3} + \kappa_{2}} t_{1} t_{2}, \quad x_{4} = \frac{\kappa_{3}(\kappa_{6} + \kappa_{5})}{\kappa_{6}\kappa_{4}}, \quad x_{5} = \frac{\kappa_{1}\kappa_{3}}{\kappa_{6}(\kappa_{3} + \kappa_{2})} t_{1} t_{2}.$$
So
$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}.$$

Steady states and monomial parametrizations

Question: Does V_{κ} admit a monomial parametrization for all κ , with the same exponent matrix $A \in \mathbb{Z}^{d \times n}$?

$$V_{\kappa} = x_{\kappa}^* \circ X_{\mathcal{A}} := \{x_{\kappa}^* \circ t^{\mathcal{A}} \mid t \in \mathbb{R}^d_{>0}\}$$

Basic examples: complex balancing for deficiency zero networks, networks in the deficiency one theorem.

Reason:

- It is useful to have parametrizations, and monomial parametrizations are easy.
- Knowing A, even if x_κ^κ is not known, allows to decide upon multistationarity (Conradi, Dickenstein, Pérez-Millán, Shiu).
- Varieties defined by monomial parametrizations are "nice" (toric varieties: dimension, nonsingularity...).
- For such varieties, total amounts can be scaled and multistationarity is preserved (Conradi, Kahle).

• (...)

Mathematical and computational methods

Does V_{κ} admit a monomial parametrization for all κ , with the same exponent matrix $A \in \mathbb{Z}^{d \times n}$?

$$V_{\kappa} = x_{\kappa}^* \circ X_A := \{x_{\kappa}^* \circ t^A \mid t \in \mathbb{R}_{>0}^d\}$$

Find the irreducible components of V_κ, decide which ones intersect ℝⁿ_{>0}, decide toricity by finding a Gröbner basis of the defining ideal: if it consists of binomials, then the monomial parametrization exists.

In practice:

 Find a Gröbner basis of the steady state ideal, and see whether it consists of binomials. This implies the monomial parametrization exists over V_{κ,C} (only sufficient condition).

Working with κ is not straightforward (comprehensive Gröbner bases, etc...)

- Some works look at specific families and check whether binomials arise from linear operations.
- Phrase as a quantifier elimination problem (people in the audience can tell you about that...).

Today: Exploit the structure of the system.

Our systems are not generic and we want toricity for all κ .

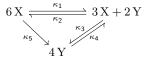
Note: As only the row space of N matters for

$$N(\kappa \circ x^B) = 0,$$

I'll often replace N by one of maximal rank, and denote it by N.

$$N \in \mathbb{R}^{n \times r}$$
 \rightarrow $N \in \mathbb{R}^{s \times r}$

Triangle network



The steady states are the zeros of

$$f_{\kappa} = \kappa_1 x_1^6 - \kappa_2 x_1^3 x_2^2 + \kappa_3 x_1^3 x_2^2 - \kappa_4 x_2^4 + 2\kappa_5 x_1^6.$$

So

$$N = \begin{bmatrix} 1 & -1 & 1 & -1 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 6 & 3 & 3 & 0 & 6 \\ 0 & 2 & 2 & 4 & 0 \end{bmatrix}$$

It holds

$$V_{\kappa} = \{(t^2, \alpha t^3) \mid t \in \mathbb{R}_{>0}\},\$$

where α is the unique positive root of the polynomial $-(\kappa_1 + 2\kappa_5) + (\kappa_2 - \kappa_3)y^2 + \kappa_4 y^4$. In this example, the ideal $\langle f_{\kappa} \rangle$ is only binomial when $\kappa_2 = \kappa_3$.

٠

Necessary condition: invariance under the action X_A

Theorem. (Feliu, Henriksson) Let $V_{\kappa} = \{x \in \mathbb{R}^n_{>0} | N(\kappa \circ x^B) = 0\}$ with $N \in \mathbb{R}^{n \times r}$, $B \in \mathbb{R}^{n \times r}$. Let $A \in \mathbb{Z}^{d \times n}$.

The following are equivalent:

•
$$x^* \circ X_A \subseteq V_{\kappa}$$
 for all $\kappa \in \mathbb{R}^r_{>0}$ and $x^* \in V_{\kappa}$.

• For every extreme ray w of ker $(N) \cap \mathbb{R}_{>0}^r$ and every $i, j \in \text{supp}(w)$, it holds that

 $\operatorname{col}_i(AB) = \operatorname{col}_i(AB)$

In the IDHKP-IDH system: extreme rays of ker(N) $\cap \mathbb{R}_{\geq 0}^r$:

$$(1,0,1,1,0,1), (0,0,0,1,1,0), (1,1,0,0,0,0)$$

We have:

The theorem holds: V_{κ} is invariant by the action by X_A .

E Feliu

In practice: detecting invariance

Theorem. (Feliu, Henriksson) Let
$$A \in \mathbb{Z}^{d \times n}$$
. The following are equivalent:
(i) $V_{\kappa} \circ X_A \subseteq V_{\kappa}$ for all $\kappa \in \mathbb{R}_{>0}^r$.
(ii) For every extreme ray w of ker $(N) \cap \mathbb{R}_{\geq 0}^r$ and every $i, j \in \text{supp}(w)$, it holds that
 $\operatorname{col}_i(AB) = \operatorname{col}_j(AB)$

When (ii) holds, V_{κ} is a union of cosets of X_A .

Approach:

- Find the extreme rays and partition the set {1,..., n} accordingly.
- Consider a symbolic matrix A and impose (ii) on AB. This gives a linear system.
- Solve the system to find A of maximal rank.

In practice: detecting invariance

- Find the extreme rays and partition the set $\{1, \ldots, n\}$ accordingly.
- Consider a symbolic matrix A and impose (ii) on AB. This gives a linear system.
- Solve the system to find A of maximal rank.

In the IDHKP-IDH system: extreme rays of ker(N) $\cap \mathbb{R}_{>0}^r$:

$$(1, 0, 1, 1, 0, 1), (0, 0, 0, 1, 1, 0), (1, 1, 0, 0, 0, 0).$$

All columns of AB need to be equal.

This gives the system

$$\begin{bmatrix} a_{1,1} + a_{1,2} & a_{1,3} & a_{1,3} & a_{1,3} + a_{1,4} & a_{1,5} & a_{1,5} \\ a_{2,1} + a_{2,2} & a_{2,3} & a_{2,3} & a_{2,3} + a_{2,4} & a_{2,5} & a_{2,5} \end{bmatrix} = \begin{bmatrix} c_{1,1} & c_{1,1} & c_{1,1} & c_{1,1} & c_{1,1} & c_{1,1} \\ c_{2,1} & c_{2,1} & c_{2,1} & c_{2,1} & c_{2,1} & c_{2,1} & c_{2,1} \end{bmatrix}$$

One solution is

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

This approach always returns a matrix A

Consider the network

$$\begin{split} \mathrm{HK}_{00} &\to \mathrm{HK}_{\mathrm{p}0} \to \mathrm{HK}_{0\mathrm{p}} \to \mathrm{HK}_{\mathrm{p}\mathrm{p}} \\ \mathrm{HK}_{0\mathrm{p}} + \mathrm{RR} \to \mathrm{HK}_{00} + \mathrm{RR}_{\mathrm{p}} \\ \mathrm{HK}_{\mathrm{p}\mathrm{p}} + \mathrm{RR} \to \mathrm{HK}_{\mathrm{p}0} + \mathrm{RR}_{\mathrm{p}} \\ \mathrm{RR}_{\mathrm{p}} \to \mathrm{RR} \end{split}$$

We apply the algorithm and obtain:

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

of rank 1, while the steady state variety has dimension 2. There is no monomial parametrization.

Missing:

- Determine the dimension of V_{κ} .
- If dimensions match, then V_{κ} is a finite union of cosets of the form $x_{\kappa}^* \circ X_A$

Counting components

Well-known result going back to Feinberg, Horn, Jackson:

Let $A \in \mathbb{Z}^{d \times n}$ and $x^* \in \mathbb{R}^n_{>0}$. Then it holds that

 $\#((x^*\circ X_A)\cap (\ker(A)+x_0)\,)=1 \qquad \text{for all } x_0\in \mathbb{R}^n_{>0}\,.$

 $\#(V_{\kappa} \cap (\ker(A) + x_0))$ gives the number of cosets of the form $x^* \circ X_A$ whose union is V_{κ} .

Result. (Feliu, Henriksson) Let
$$A \in \mathbb{Z}^{d \times n}$$
. Assume
(i) $V_{\kappa} \circ X_A \subseteq V_{\kappa}$ for all $\kappa \in \mathbb{R}_{>0}^r$.
(ii) $\#(V_{\kappa} \cap (\ker(A) + x_0)) = 1$ for all $x_0 \in \mathbb{R}_{>0}^n$ and $\kappa \in \mathbb{R}_{>0}^r$.
Then
 $V_{\kappa} = x_{\kappa}^* \circ X_A$
for any $x_{\kappa}^* \in V_{\kappa}$.

Checking (ii): the literature on multistationarity has been addressing a similar problem for many years!!

$$\#(V_{\kappa}\cap(S+x_0)).$$

Injectivity

Injectivity criterion. (Feliu, Wiuf, 2013) Let $f_{\kappa} = N \operatorname{diag}(\kappa) x^{B}$, with $N \in \mathbb{R}^{s \times r}$, $B \in \mathbb{R}^{n \times r}$, and let $A \in \mathbb{R}^{(n-s) \times n}$. The following conditions are equivalent: (inj) f_{κ} is injective on $(\ker(A) + x_{0}) \cap \mathbb{R}^{n}_{>0}$ for all $x_{0} \in \mathbb{R}^{n}_{>0}$ and $\kappa \in \mathbb{R}^{r}_{>0}$. (det) The determinant of

$$M_{\mu,lpha} := egin{bmatrix} A \ N \operatorname{\mathsf{diag}}(\mu) B^t \operatorname{\mathsf{diag}}(lpha) \end{bmatrix}$$

is a nonzero polynomial in $\mathbb{R}[\mu, \alpha]$, with all nonzero coefficients having the same sign.

In the IDHKP-IDH system:

$$\det(M_{\mu,\alpha}) = -\alpha_1 \alpha_3 \alpha_4 \mu_1 \mu_3 \mu_4 - \alpha_1 \alpha_4 \alpha_5 \mu_1 \mu_4 \mu_6 - \alpha_2 \alpha_3 \alpha_4 \mu_1 \mu_3 \mu_4 - \alpha_2 \alpha_4 \alpha_5 \mu_1 \mu_4 \mu_6 - \mu_2 \alpha_3 \mu_6 \alpha_5 \mu_4 \alpha_4 - \mu_3 \alpha_3 \mu_6 \alpha_5 \mu_4 \alpha_4.$$

As (det) holds, so does (inj), and $\#(V_{\kappa} \cap (\ker(A) + x_0)) \leq 1$ for all $x_0 \in \mathbb{R}^n_{>0}$ and $\kappa \in \mathbb{R}^r_{>0}$.

As we had invariance, the system admits a monomial parametrization with the matrix A we found, if we can show nonemptiness of V_{κ} .

Dimension

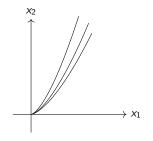
With

$$N = \begin{bmatrix} -6 & -3 & 6 & 3 \\ 4 & 2 & -4 & -2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 9 & 3 & 0 & 6 \\ 0 & 4 & 6 & 2 \end{bmatrix},$$

the set V_{κ} satisfies the invariance condition with

$$A = \begin{bmatrix} 2 & 3 \end{bmatrix}$$

but there are more than one component for some κ :



To conclude that V_{κ} is a finite union of components admitting a monomial parametrization with the same exponent matrix, we need to know the dimension of V_{κ} .

Dimension and non-degeneracy

Non-degeneracy. Let $f_{\kappa} = N \operatorname{diag}(\kappa) x^{B}$, with $N \in \mathbb{R}^{s \times r}, B \in \mathbb{R}^{n \times r}$, and let $A \in \mathbb{R}^{(n-s) \times n}$. Let $E = \begin{bmatrix} E_{1} & \cdots & E_{\ell} \end{bmatrix}$, where E_{1}, \ldots, E_{ℓ} are the extreme rays of the convex polyhedral cone ker $(N) \cap \mathbb{R}_{>0}^{r}$.

Then

$$\{J_{f_{\kappa}}(x^*) \mid x^* \in V_{\kappa}, \kappa \in \mathbb{R}_{>0}^r\} = \{N \operatorname{diag}(E\lambda) B^t \operatorname{diag}(h) \mid \lambda \in \mathbb{R}_{>0}^\ell, E\lambda \in \mathbb{R}_{>0}^r, h \in \mathbb{R}_{>0}^n\}.$$

The $s \times s$ minors of $N \operatorname{diag}(E\lambda) B^t \operatorname{diag}(h)$ are polynomials in $\mathbb{R}[\lambda, h]$. If at least one of these minors is nonzero for all $\lambda \in \mathbb{R}^{\ell}_{\geq 0}$ and all $h \in \mathbb{R}^{n}_{>0}$, then all points in V_{κ} are non-degenerate, and hence

dim
$$V_{\kappa} = n - s$$
.

Emptiness

The results are non-informative, if we do not verify that V_κ is nonempty.

- If ker(N) $\cap \mathbb{R}_{>0}^r \neq \emptyset$, then V_{κ} is nonempty for some κ .
- We can directly check whether $V_{\kappa} \neq \emptyset$ symbolically by writing

$$N \operatorname{diag}(\kappa) x^{B} = \Sigma_{\kappa} x^{Y},$$

impose $x^{Y} \in \ker(N) \cap \mathbb{R}_{>0}^{r}$, and apply logarithms.

• Quantifier elimination (Reduce).

Computational workflow to determine monomial parametrizations

- Find extreme rays of the flux cone ker $(N) \cap \mathbb{R}^{r}_{>0}$.
- Find the maximally fine partition of {1,...,r} that is compatible with the structure of ker(N) ∩ ℝ^r_{>0}.
- Form symbolic $d \times n$ matrix A, and find expression for AB. Impose equality of columns according to the partition, and solve for A.
- If there is a solution with rk(A) = n s: V_{κ} may have toric components wrt A.
 - If we have injectivity wrt ker(A): For all κ , we have $V_{\kappa} = \emptyset$ or V_{κ} toric wrt A. Check nonemptiness.
 - If we have non-degeneracy for all (most) κ : Conclude finitely many toric components for all κ .
- If rk(A) < n s for all solutions A:

Rule out toric components if non-degeneracy check holds.

Note: this procedure returns A, but not necessarily a base point x_{κ}^* .

ODEbase - Mass-action models with steady states and $r \leq 100$

ID	n	r	d	$\max_{\mathrm{rk}(A)}$	Injectivity wrt $\ker(A)$	Non- degeneracy	Binomial Gröbner basis	Toric components
2	13	34	2	1	-	-	-	×
11	22	30	7	7	1	1	1	1
26	11	16	3	2	-	-	-	×
28	16	27	3	2	-	-	-	X
30	18	32	3	2	_	-	-	×
38	17	20	7	7	1	1	1	1
57	6	10	1	1	1	1	1	1
60	4	6	1	1	1	1	1	1
85	17	34	5	1	-	-	-	×
92	4	6	2	1	-	-	-	×
200) 22	46	7	1	-	-	-	×
405	56	8	2	1	-	-	-	×
413	35	9	1	0	-	-	-	×
430) 27	44	6	5	-	-	-	×
431	1 27	44	6	2	-	-	-	×
486	5 2	2	1	1	1	1	1	1
487		6	3	3	1	1	1	1
500		36	2	1	-	-	-	×
629		4	3	3	1	1	1	1
637		35	3	0	-	-	-	×
647		11	5	4	-	-	-	×
692	28	10	3	3	1	1	1	1
854		7	1	1	1	1	1	1
871	18	17	1	0	-	-	-	×

ODEbase - Non-mass-action models with steady states and $r \leq 100$

ID	n	r	d	$\max_{\mathrm{rk}(A)}$	Injectivity wrt $ker(A)$	Non- degeneracy	Binomial Gröbner basis	$ V_{\kappa}/X_A^+ $
2	13	34	2	1	×			
4	5	7	$\frac{2}{2}$	2	2	1	1	1
6	4	3	2	2			x	1
9	26	30	11	11				1
10	8	10	3	3		1	1	1
11	22	30	7	7				1
23	13	22	3	3	,	1	1	1
24	3	4	1	1				1
26	11	16	3	2	×		×	~ ~
27	5	4	3	$\tilde{3}$	1			1
28	16	27	3	2	×		×	~ ~
29	6	7	3	$\tilde{3}$	1			1
~ ~		~ ~	~	-				
704 715	17 5	$\frac{33}{11}$	2	2		1	1	≤ 1*
715			1	1			~	1
		25	1	1			<i>`</i>	≤ 1
730	45	108	1	1				1
757 767	10 3	18 5	$^{3}_{1}$	3 1				1
810	3 14	53	1					1
812	6	9	2	$\frac{1}{2}$				≤ 1*
823	16	9 20	2 6	6				1
823 824	2	20	0	6 1	~	~		1
	20	3 29	7	5	×		~	-
832 835	20 55	29 74	23	5 23	^	*	<i>`</i> ,	∞
835 837	ээ 8	17	23		,			$< \infty$
837 842	8 21	26	110	1 7	×	*	~	1
842 853	21 9	20 21	10		<i>`</i> ,	~	~	$\frac{\infty}{1}$
853 854	9 4	21	1	1	🖌 Konn, Mar	1 0000	,	1
004	4	- (1	1	Sonn, Mar	rcn 2022 🖌	~	1

Thank you for your attention