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Setting

• Reaction network:

X1
κ1−−→ X2 2X2

κ2−−→ 2X1 X1 + X2
κ3−−→ 2X2

• Dynamical system: (xi = concentration of species Xi )[
ẋ1

ẋ2

]
=

[
−1 2 −1

1 −2 1

] κ1x1

κ2x2
2

κ3x1x2

 ,
ẋ = N(κ ◦ xB), x ∈ Rn

≥0, B,N ∈ Rn×r , κ ∈ Rr
>0

N = stoichiometric matrix, κj > 0 reaction rate constant, (κ ◦ xB) mass-action kinetics.

• Stoichiometric compatibility classes:

x1 + x2 = c, Wx = c, x ∈ Rn
≥0

W = matrix with rows a basis of the left kernel of N, ker(NT ) = Im(N)⊥.

(Wẋ = 0 and trajectories are confined to Wx = c, with c depending on the initial

condition. )

• Multistationarity: More than one steady state (solution to N(κ ◦ xB) = 0) in some
stoichiometric compatibility class.
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Monomial parametrizations

Consider the set of steady states

Vκ = {x ∈ Rn
>0| N(κ ◦ xB) = 0}, N ∈ Rn×r ,B ∈ Rn×r .

Question: Does Vκ admit a monomial parametrization for all κ, with the same exponent
matrix A ∈ Zd×n?

Vκ = x∗κ ◦ XA := {x∗κ ◦ tA | t ∈ Rd
>0},

where

(tA)j =
d∏

i=1

t
aij
i , x∗κ ∈ Vκ.

Equivalently:
If we let Vκ,C denote the complex variety defined by the steady state equations, we want
to determine when Vκ,C has only one irreducible component intersecting Rn

>0, which is
toric (defined by binomial equations).
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Example

The IDHKP-IDH system in bacterial cells from Shinar-Feinberg:

X1 + X2

κ1−−⇀↽−−
κ2

X3
κ3−−→ X1 + X4 X3 + X4

κ4−−⇀↽−−
κ5

X5
κ6−−→ X3 + X2

We have

N =


−1 1 1 0 0 0
−1 1 0 0 0 1
1 −1 −1 −1 1 1
0 0 1 −1 1 0
0 0 0 1 −1 −1

 and B =


1 0 0 0 0 0
1 0 0 0 0 0
0 1 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 1

 .
Monomial parametrization:

x1 = t1, x2 = t2, x3 =
κ1

κ3 + κ2
t1 t2, x4 =

κ3(κ6 + κ5)

κ6κ4
, x5 =

κ1κ3

κ6(κ3 + κ2)
t1 t2.

So

A =

[
1 0 1 0 1
0 1 1 0 1

]
.
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Steady states and monomial parametrizations

Question: Does Vκ admit a monomial parametrization for all κ, with the same exponent
matrix A ∈ Zd×n?

Vκ = x∗κ ◦ XA := {x∗κ ◦ tA | t ∈ Rd
>0}

Basic examples: complex balancing for deficiency zero networks, networks in the
deficiency one theorem.

Reason:

• It is useful to have parametrizations, and monomial parametrizations are easy.

• Knowing A, even if x∗κ is not known, allows to decide upon multistationarity (Conradi,

Dickenstein, Pérez-Millán, Shiu).

• Varieties defined by monomial parametrizations are “nice” (toric varieties:
dimension, nonsingularity...).

• For such varieties, total amounts can be scaled and multistationarity is preserved
(Conradi, Kahle).

• (...)
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Mathematical and computational methods
Does Vκ admit a monomial parametrization for all κ, with the same exponent matrix
A ∈ Zd×n?

Vκ = x∗κ ◦ XA := {x∗κ ◦ tA | t ∈ Rd
>0}

• Find the irreducible components of Vκ, decide which ones intersect Rn
>0, decide

toricity by finding a Gröbner basis of the defining ideal: if it consists of binomials,
then the monomial parametrization exists.

In practice:

• Find a Gröbner basis of the steady state ideal, and see whether it consists of
binomials. This implies the monomial parametrization exists over Vκ,C (only
sufficient condition).

Working with κ is not straightforward (comprehensive Gröbner bases, etc...)

• Some works look at specific families and check whether binomials arise from linear
operations.

• Phrase as a quantifier elimination problem (people in the audience can tell you
about that...).

Today: Exploit the structure of the system.
Our systems are not generic and we want toricity for all κ.

E Feliu Bonn, March 2022 6 / 21



un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

Note: As only the row space of N matters for

N(κ ◦ xB) = 0,

I’ll often replace N by one of maximal rank, and denote it by N.

N ∈ Rn×r → N ∈ Rs×r
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Triangle network

6X 3X + 2Y

4Y

κ1

κ5

κ3

κ2

κ4

The steady states are the zeros of

fκ = κ1x
6
1 − κ2x

3
1 x

2
2 + κ3x

3
1 x

2
2 − κ4x

4
2 + 2κ5x

6
1 .

So

N =
[
1 −1 1 −1 2

]
and B =

[
6 3 3 0 6
0 2 2 4 0

]
.

It holds
Vκ = {(t2, αt3) | t ∈ R>0},

where α is the unique positive root of the polynomial −(κ1 + 2κ5) + (κ2 − κ3)y 2 + κ4y
4.

In this example, the ideal 〈fκ 〉 is only binomial when κ2 = κ3.
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Necessary condition: invariance under the action XA

Theorem. (Feliu, Henriksson) Let Vκ = {x ∈ Rn
>0| N(κ ◦ xB) = 0} with N ∈

Rn×r ,B ∈ Rn×r . Let A ∈ Zd×n.
The following are equivalent:

• x∗ ◦ XA ⊆ Vκ for all κ ∈ Rr
>0 and x∗ ∈ Vκ.

• For every extreme ray w of ker(N)∩Rr
≥0 and every i , j ∈ supp(w), it holds that

coli (AB) = colj(AB)

In the IDHKP-IDH system: extreme rays of ker(N) ∩ Rr
≥0:

(1, 0, 1, 1, 0, 1), (0, 0, 0, 1, 1, 0), (1, 1, 0, 0, 0, 0)

We have:

AB =

[
1 0 1 0 1
0 1 1 0 1

]
1 0 0 0 0 0
1 0 0 0 0 0
0 1 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 1

 =

[
1 1 1 1 1 1
1 1 1 1 1 1

]
,

The theorem holds: Vκ is invariant by the action by XA.
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In practice: detecting invariance

Theorem. (Feliu, Henriksson) Let A ∈ Zd×n. The following are equivalent:

(i) Vκ ◦ XA ⊆ Vκ for all κ ∈ Rr
>0.

(ii) For every extreme ray w of ker(N)∩Rr
≥0 and every i , j ∈ supp(w), it holds that

coli (AB) = colj(AB)

When (ii) holds, Vκ is a union of cosets of XA.

Approach:

• Find the extreme rays and partition the set {1, . . . , n} accordingly.

• Consider a symbolic matrix A and impose (ii) on AB. This gives a linear system.

• Solve the system to find A of maximal rank.
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In practice: detecting invariance

• Find the extreme rays and partition the set {1, . . . , n} accordingly.

• Consider a symbolic matrix A and impose (ii) on AB. This gives a linear system.

• Solve the system to find A of maximal rank.

In the IDHKP-IDH system: extreme rays of ker(N) ∩ Rr
≥0:

(1, 0, 1, 1, 0, 1), (0, 0, 0, 1, 1, 0), (1, 1, 0, 0, 0, 0).

All columns of AB need to be equal.

This gives the system[
a1,1 + a1,2 a1,3 a1,3 a1,3 + a1,4 a1,5 a1,5

a2,1 + a2,2 a2,3 a2,3 a2,3 + a2,4 a2,5 a2,5

]
=

[
c1,1 c1,1 c1,1 c1,1 c1,1 c1,1

c2,1 c2,1 c2,1 c2,1 c2,1 c2,1

]

One solution is

A =

[
1 0 1 0 1
0 1 1 0 1

]
.
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This approach always returns a matrix A

Consider the network

HK00 → HKp0 → HK0p → HKpp

HK0p + RR→ HK00 + RRp

HKpp + RR→ HKp0 + RRp

RRp → RR

We apply the algorithm and obtain:

A =
[
1 1 1 1 0 1

]
of rank 1, while the steady state variety has dimension 2. There is no monomial
parametrization.

Missing:

• Determine the dimension of Vκ.

• If dimensions match, then Vκ is a finite union of cosets of the form x∗κ ◦ XA
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Counting components
Well-known result going back to Feinberg, Horn, Jackson:

Let A ∈ Zd×n and x∗ ∈ Rn
>0. Then it holds that

#((x∗ ◦ XA) ∩ (ker(A) + x0) ) = 1 for all x0 ∈ Rn
>0 .

#(Vκ ∩ (ker(A) + x0) ) gives the number of cosets of the form x∗ ◦XA whose union is Vκ.

Result. (Feliu, Henriksson) Let A ∈ Zd×n. Assume

(i) Vκ ◦ XA ⊆ Vκ for all κ ∈ Rr
>0.

(ii) #(Vκ ∩ (ker(A) + x0) ) = 1 for all x0 ∈ Rn
>0 and κ ∈ Rr

>0.

Then
Vκ = x∗κ ◦ XA

for any x∗κ ∈ Vκ.

Checking (ii): the literature on multistationarity has been addressing a similar problem
for many years!!

#(Vκ ∩ (S + x0) ).
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Injectivity

Injectivity criterion. (Feliu, Wiuf, 2013) Let fκ = N diag(κ)xB , with N ∈ Rs×r ,B ∈
Rn×r , and let A ∈ R(n−s)×n. The following conditions are equivalent:
(inj) fκ is injective on (ker(A) + x0) ∩ Rn

>0 for all x0 ∈ Rn
>0 and κ ∈ Rr

>0.
(det) The determinant of

Mµ,α :=

[
A

N diag(µ)B t diag(α)

]
is a nonzero polynomial in R[µ, α], with all nonzero coefficients having the same sign.

In the IDHKP-IDH system:

det(Mµ,α) = −α1α3α4µ1µ3µ4 − α1α4α5µ1µ4µ6

− α2α3α4µ1µ3µ4 − α2α4α5µ1µ4µ6 − µ2α3µ6α5µ4α4 − µ3α3µ6α5µ4α4.

As (det) holds, so does (inj), and #(Vκ ∩ (ker(A) + x0) ) ≤ 1 for all x0 ∈ Rn
>0 and

κ ∈ Rr
>0.

As we had invariance, the system admits a monomial parametrization with the matrix A
we found, if we can show nonemptiness of Vκ.
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Dimension

With

N =

[
−6 −3 6 3
4 2 −4 −2

]
and B =

[
9 3 0 6
0 4 6 2

]
,

the set Vκ satisfies the invariance condition with

A =
[
2 3

]
but there are more than one component for some κ:

x1

x2

To conclude that Vκ is a finite union of components admitting a monomial
parametrization with the same exponent matrix, we need to know the dimension of Vκ.
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Dimension and non-degeneracy

Non-degeneracy. Let fκ = N diag(κ)xB , with N ∈ Rs×r ,B ∈ Rn×r , and let A ∈
R(n−s)×n. Let E =

[
E1 · · · E`

]
, where E1, . . . ,E` are the extreme rays of the

convex polyhedral cone ker(N) ∩ Rr
≥0.

Then

{Jfκ (x∗) | x∗ ∈ Vκ, κ ∈ Rr
>0} = {N diag(Eλ)Bt diag(h) | λ ∈ R`≥0,Eλ ∈ Rr

>0, h ∈ Rn
>0} .

The s × s minors of N diag(Eλ)B t diag(h) are polynomials in R[λ, h]. If at least one
of these minors is nonzero for all λ ∈ R`≥0 and all h ∈ Rn

>0, then all points in Vκ are
non-degenerate, and hence

dimVκ = n − s.
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Emptiness

The results are non-informative, if we do not verify that Vκ is nonempty.

• If ker(N) ∩ Rr
>0 6= ∅, then Vκ is nonempty for some κ.

• We can directly check whether Vκ 6= ∅ symbolically by writing

N diag(κ)xB = Σκx
Y ,

impose xY ∈ ker(N) ∩ Rr
>0, and apply logarithms.

• Quantifier elimination (Reduce).
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Computational workflow to determine monomial parametrizations

• Find extreme rays of the flux cone ker(N) ∩ Rr
≥0.

• Find the maximally fine partition of {1, . . . , r} that is compatible with the structure
of ker(N) ∩ Rr

>0.

• Form symbolic d × n matrix A, and find expression for AB. Impose equality of
columns according to the partition, and solve for A.

• If there is a solution with rk(A) = n − s: Vκ may have toric components wrt A.

• If we have injectivity wrt ker(A):
For all κ, we have Vκ = ∅ or Vκ toric wrt A. Check nonemptiness.

• If we have non-degeneracy for all (most) κ: Conclude finitely many toric components
for all κ.

• If rk(A) < n − s for all solutions A:
Rule out toric components if non-degeneracy check holds.

Note: this procedure returns A, but not necessarily a base point x∗κ .
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ODEbase - Mass-action models with steady states and r ≤ 100
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ODEbase - Non-mass-action models with steady states and r ≤ 100

...
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Thank you for
your attention
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