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(My) Transition from Academia to Industry

◼ Academia

Work on computational method development for a defined problem

Supervision of students

Scientific communication => publications, conferences, “open-source” code

◼ Industry

Focus on use-cases / business needs 

Consulting with business partners, operating divisions in identifying problem statements

Data Preparation

Sync with multiple teams, management topics

Patents, “open-source” code possible (with careful business considerations) 
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Modeling Journey
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Data sources

Data
Data sources

Data sources

Data sources

Data 

Preparation
Modeling

Model 

evaluation
Deployment

Relatively under-represented in research communities

Relatively more popular in 

research communities

We assume here that the business problem is identified and is 

translated to a modeling problem

Relatively under-represented in research communities

Illustrative loops, other 

types of feedback loops 

possible

Synthetic Input 

data (e.g., linear 

/ non-linear 

inequalities)
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Modeling

Predictive Models

Mechanistic Models / Parametric

Pros

• Extrapolation to unseen data

• Training data demand is lower

• Training data variance is lower

Cons 

• Deeper process understanding

• Effort / time for model development

• Numerical simulations 

Machine Learning / Nonparametric

Pros

• Expert process understanding not required

• Time to develop the model is very short

• Inferences times are very fast

Cons 

• Higher training data demand

• Higher variance in the training data to extrapolate

• Limited extrapolation

Figure adapted from von Stosch, M., Oliveira, R., Peres, J., & de Azevedo, S. F. (2014). Hybrid semi parametric modeling in process systems

engineering: Past, present and future. Computers & Chemical Engineering, 60, 86–101. 



Mechanistic Models: The Abstraction of Reality 
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𝒙0 𝒙𝑓

Inputs: Outputs:

𝒖

State variables: 𝒙

Changes in 𝒙, relationship between 

phases and boundaries

Process

Balance equations, e.g.,

𝑚𝑎𝑠𝑠, 𝑒𝑛𝑒𝑟𝑔𝑦
Constitutive equations, e.g.,

𝑖𝑑𝑒𝑎𝑙 𝑔𝑎𝑠 𝑙𝑎𝑤

Assumptions and 

simplifications held to be 

true !



Mechanistic Models: The Equations
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Process

General form of balance equation

𝑑Ψ

𝑑𝑡
= 𝐽Ψ + 𝐽s,Ψ + ΓΨ

Assumptions: 

Homogeneous!

Extensive variable, e.g.,

𝑚𝑎𝑠𝑠, 𝑒𝑛𝑒𝑟𝑔𝑦,𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚

Convective flows, e.g.,

𝐹𝑙𝑜𝑤𝑠 𝑖𝑛 𝑎𝑛𝑑 𝑜𝑢𝑡 𝑜𝑓
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣𝑜𝑙𝑢𝑚𝑒

None-convective flows, e.g.,

𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑣𝑖𝑎 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

Source-Sink, e.g.,

𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

Often general (integral) balance equation is 

formulated as:

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝐼𝑛 − 𝑂𝑢𝑡 + 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

Content partially adapted from Dr. Olga Walz, BASF SE

Inputs Outputs
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Mechanistic Models: Batch Reactor

Mass balance equations: Ψ = 𝑚𝑇 or Ψ = 𝑚𝑖Assumptions:

• homogeneous

• one phase

• isothermal

• isochoric

𝑑𝑚𝑇

𝑑𝑡
= 𝐽mT

+ 𝐽s,mT
+ ΓmT

= 0

batch

homogenous, 

one phase

mass doesn’t 

disappear

𝑚𝑇 =
𝑖=1

𝑛𝑐
𝑚𝑖conservation law ⟹

𝑑𝑚𝑖

𝑑𝑡
= 𝐽mi

+ 𝐽s,mi
+ Γmi

𝑟𝑗 = 𝑓 𝐸𝑎, 𝑘0, 𝑐𝑖 , 𝑇 , e. g., 𝑟𝑗 = 𝑘0,𝑗 ⋅ 𝑒
−
𝐸𝑎,𝑗
𝑅𝑇 ⋅ෑ

𝑖=1

𝑛𝑐
𝑐𝑖
𝑝𝑖

𝑐𝑖 =
𝑛𝑖

𝑉𝑚𝑖𝑥𝑡𝑢𝑟𝑒
=

𝑚𝑖

𝑉𝑚𝑖𝑥𝑡𝑢𝑟𝑒𝑀𝑤,𝑖

= 𝑉𝑚𝑖𝑥𝑡𝑢𝑟𝑒 ⋅ 𝑀𝑤,𝑖 ⋅
𝑗=1

𝑛𝑅
𝜈𝑖,𝑗 ⋅ 𝑟𝑖,𝑗
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Mechanistic Models: Batch Reactor

Mass balance equations: Ψ = 𝑚𝑇 or Ψ = 𝑚𝑖

𝑚𝑇 =
𝑖=1

𝑛𝑐
𝑚𝑖

𝑑𝑚𝐴

𝑑𝑡
= 𝑉 ⋅ 𝑀𝑤,𝐴 ⋅ −1 ⋅ 𝑟1

𝑑𝑚𝐵

𝑑𝑡
= 𝑉 ⋅ 𝑀𝑤,𝐵 ⋅ −2 ⋅ 𝑟1

𝑑𝑚𝐶

𝑑𝑡
= 𝑉 ⋅ 𝑀𝑤,𝐶 ⋅ +1 ⋅ 𝑟1

𝑟1 = 𝑘0,1 ⋅ 𝑒
−
𝐸𝑎,1
𝑅𝑇 ⋅ 𝑐𝐴

1 ⋅ 𝑐𝐵

1
3

c𝐴 =
𝑛𝐴
𝑉
=

𝑚𝐴

𝑉 ⋅ 𝑀𝑤,𝐴

c𝐵 =
𝑛𝐵
𝑉
=

𝑚𝐵

𝑉 ⋅ 𝑀𝑤,𝐵

c𝐶 =
𝑛𝐶
𝑉
=

𝑚𝐶

𝑉 ⋅ 𝑀𝑤,𝐶

𝑨 + 𝟐𝑩 → 𝑪

𝜈1,𝐴 = −1,

𝜈1,𝐵 = −2,

𝜈1,𝐶 = +1,

For a consistent model use:

(n − 1) balance equations
1 conservation equation

Assumptions:

• homogeneous

• one phase

• isothermal

• isochoric



Data-driven Models

3/15/20229

Process

A typical machine learning approach

𝑂𝑢𝑝𝑢𝑡𝑠 = 𝑓 𝐼𝑛puts

• Several existing functional forms of f can be used e.g., Linear 

regression, Neural networks, etc.

• Training: Algorithms identify the free parameters / hyper-parameters of 

a selected f based on the historical Inputs/Outputs. 

Inputs Outputs



Application of Predictive Models

Process Control

◼ Usual tasks in machine learning include

 Identification of the model
⚫ Mechanistic model
⚫ Data-driven model

Prediction i.e., evaluate the model for 
different (future) inputs

 Interpretability i.e., understand the model 
structure and learned parameters in order to 
better understand the underlying process 
⚫ Compute variable importance and 

sensitivities

Control i.e., invert the model to infer optimal 
inputs for desired outputs
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Process

Sampling
rate

xx secs

Process variations, KPIs

Sensors Measurements

Objectives

Constraints

Optimizer

Process Model

Manipulated variables



Academic Collaboration

◼ Master thesis project with Prof. Dr. Holger Fröhlich, Fraunhofer SCAI, Sankt Augustin, Germany

◼ In 2019 TU-Berlin and BASF SE founded BASLEARN, the Berlin based Joint Lab for Machine 
Learning (details: https://www.baslearn.tu-berlin.de/menue/baslearn/)

◼ Several other collaborations exist within the area of modeling, optimization, etc..

15.03.202211

https://www.baslearn.tu-berlin.de/menue/baslearn/


Summary

◼ Several opportunities exist within BASF for application of AI / modeling solutions

Example: BASLEARN (w/ TU-Berlin), many more …

◼ More dialogue is required to align interests between Academia and Industry

Under-represented topics like code maintenance, IT infrastructure, data quality, robust model 
evaluations, underlying mathematics, etc.

◼ Successful AI solutions often requires a range of skills (consulting, software development, modeling 
,etc.)

Partly mitigated by interdisciplinary teams

◼ Personally, an exciting journey so far…

15.03.202212





Professional Career

◼ Bachelor of Technology in Bioinformatics (Noida, India), MSc Life Science Informatics (Bonn, Germany)

◼ PhD in AG Prof. Dr. Andreas Weber and Prof. Dr. Holger Fröhlich (Bonn, Germany), 2016

 Symbolic methods (Tropical Geometry)

 Computational Systems Biology

 Cross-exchange with other disciplines (e.g., Mathematics, Non-linear Dynamics, Biology, etc) 

◼ Post-doc in the AG Prof. Dr. Andreas Schuppert (RWTH Aachen, Germany), 2019

 Hybrid modeling topics

 Focus on modeling of clinical data (Intensive Care Units)

 Symbolic methods (“Symbiont” project)

◼ Production Artificial Intelligence, BASF SE, current position

 Internal use cases with focus on machine learning / hybrid modeling topics

 Method development

 Industry - Academic collaboration (BASLEARN, BASF/TU-Berlin initiative)15.03.202214


