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(My) Transition from Academia to Industry

W Academia
» Work on computational method development for a defined problem
» Supervision of students
» Scientific communication => publications, conferences, “open-source” code

¥ Industry
» Focus on use-cases / business needs
» Consulting with business partners, operating divisions in identifying problem statements
» Data Preparation
» Sync with multiple teams, management topics
» Patents, “open-source” code possible (with careful business considerations)
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Modeling Journey
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Modeling
Predictive Models
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Mechanistic Models / Parametric Machine Learning / Nonparametric

Pros Pros

« Extrapolation to unseen data « EXxpert process understanding not required

» Training data demand is lower « Time to develop the model is very short

« Training data variance is lower * Inferences times are very fast

Cons Cons

« Deeper process understanding « Higher training data demand

» Effort / time for model development « Higher variance in the training data to extrapolate

* Numerical simulations « Limited extrapolation
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Figure adapted from von Stosch, M., Oliveira, R., Peres, J., & de Azevedo, S. F. (2014). Hybrid semi parametric modeling in process systems We create chemistry
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Mechanistic Models: The Abstraction of Reality
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EXCHANGE
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Assumptions and
simplifications held to be

true !
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Balance equations, e.g., Constitutive equations, e.g.,
mass, energy ideal gas law




Mechanistic Models: The Equations

Assumptions: :
Homogeneous! General form of balance equation
Extensive variable, e.g., Source-Sink, e.g.,
Process mass, energy, momentum \ Chemical reaction
dw /
|npUtS—> ——— Outputs _){l{J + ]§<F"P
Convective flows, e.g., None-convective flows, e.g.,
Flows in and out of Dif fusion via boundary
Often general (integral) balance equation is boundary volume surface

formulated as:

Accumulation = In — Out + Generation J
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Mechanistic Models:

Assumptions:
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* homogeneous
* one phase
* isothermal
* isochoric
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Mechanistic Models

Assumptions:
* homogeneous
* one phase
* isothermal
* isochoric

Vi4 = -1,
Vi = —2,
vl,C = +1,

: Batch Reactor

Mass balance equations: ¥ = m; or¥ = m;
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Data-driven Models

Process

Inputs — — Outputs

A typical machine learning approach
Ouputs = f (Inputs)

« Several existing functional forms of f can be used e.g., Linear
regression, Neural networks, etc.

« Training: Algorithms identify the free parameters / hyper-parameters of
a selected f based on the historical Inputs/Outputs.
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Application of Predictive Models

Objectives
Process Control Constraints
B Usual tasks in machine learning include

» Identification of the model
® Mechanistic model

® Data-driven model

» Prediction i.e., evaluate the model for
different (future) inputs Sampling Manipulated variables
» Interpretability i.e., understand the model

structure and learned parameters in order to

better understand the underlying process
® Compute variable importance and

sensitivities
» Control i.e., invert the model to infer optimal

Inputs for desired outputs

rate
XX SeCs

Measurements Process

Process variations, KPIs
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Academic Collaboration

W Master thesis project with Prof. Dr. Holger Fréhlich, Fraunhofer SCAI, Sankt Augustin, Germany

® In 2019 TU-Berlin and BASF SE founded BASLEARN, the Berlin based Joint Lab for Machine
Learning (details: https://www.baslearn.tu-berlin.de/menue/baslearn/)

B Several other collaborations exist within the area of modeling, optimization, etc..
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https://www.baslearn.tu-berlin.de/menue/baslearn/

Summary

W Several opportunities exist within BASF for application of Al / modeling solutions
» Example: BASLEARN (w/ TU-Berlin), many more ...

® More dialogue is required to align interests between Academia and Industry

» Under-represented topics like code maintenance, IT infrastructure, data quality, robust model
evaluations, underlying mathematics, etc.

B Successful Al solutions often requires a range of skills (consulting, software development, modeling
,etc.)

» Partly mitigated by interdisciplinary teams

m Personally, an exciting journey so far...
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Professional Career
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Bachelor of Technology in Bioinformatics (Noida, India), MSc Life Science Informatics (Bonn, Germany)

PhD in AG Prof. Dr. Andreas Weber and Prof. Dr. Holger Fréhlich (Bonn, Germany), 2016

» Symbolic methods (Tropical Geometry)

» Computational Systems Biology

» Cross-exchange with other disciplines (e.g., Mathematics, Non-linear Dynamics, Biology, etc)

Post-doc in the AG Prof. Dr. Andreas Schuppert (RWTH Aachen, Germany), 2019
» Hybrid modeling topics

» Focus on modeling of clinical data (Intensive Care Units)

» Symbolic methods (“Symbiont” project)

Production Artificial Intelligence, BASF SE, current position

» Internal use cases with focus on machine learning / hybrid modeling topics
» Method development

puspprdastry - Academic collaboration (BASLEARN, BASF/TU-Berlin initiative)




