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Aim of study

The aim of this paper is to show that reaction-diffusion models are
capable to generate a number of local attractors and to create a
number of different cell developmental patterns. Our approach to
that problem uses some basic ideas of A. Turing and L. Wolpert.
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Wolpert and Turing

More 50 years ago, Lewis Wolpert proposed the positional
information model to describe patterns of different cell types. This

model is based on threshold concentrations of a morphogen
diffusing in the tissue. 70 years ago, Alan Turing introduced the

idea of patterns originated from a homogeneous states by
reaction–diffusion mechanism. In both conceptual models, an

organism is represented as a pattern consisting of different cells.
The cells are “specialized”, i.e., each type of cell performs a unique
and special function and each of the order of 100− 200 different
types of cells in multicellular organisms has different structures,

sizes, shapes, and functions. Both approaches, Turing’s and
Wolpert’s, assume that morphogens, special reagents, can change

cell states.
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Biological ideas

Turing pioneered the idea of a morhogen. Morphogens are special
reagents, which can change cell states. Well-known morphogens

include: decapentaplegic/transforming growth factor beta,
Hedgehog/Sonic hedgehog, Wingless/Wnt, Bicoid and others. Ch.
Nüsslein-Volhard identified the first morphogen, Bicoid, one of the
transcription factors in the Drosophila syncytial embryos. The idea

of positional information, which explains, how morphogen can
work, was proposed by L. Wolpert. A morphogen spreads from a
localized source at an edge of embryo and forms a concentration
gradient across a developing tissue. That morphogen affects cell
states, these states can be represented by the different colors of

the French flag: high concentrations activate a ”blue” gene, lower
concentrations activate a ”white” gene etc. (see Fig.).
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French Flag model

Figure: Famous French Flag model shows as an 1D-organism consisting
of three kinds of cells can be created by a positional information transfer
via morphogen gradients. Proposed by L. Wolpert in 1960’s, the model
shows how embryonic cells can interpret genetic code to create a pattern.
The cell fate is determined by a morphogen level.
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Turing together with Wolpert

The Turing instability allows us to obtain periodical layered
patterns, such as zebra stripes, however, we would like to have a

model generating more complicated structures. We achieve it by a
combination of Turing and Wolpert approaches using chaotic

dynamics.
Our model is purely chemical. However, there are possible other

models exploiting mechanical effects and waves.
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Cell patterns
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Cell pattern can be considered as a string in an alphabet (red,
blue, green on Fig.). We would like to generate more complex
patterns than French flag.
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Reaction-diffusion systems (RDS)

We consider the following class of RDS with two reagents only:

ut = d∆u + f (u, v) + ζ, (1)

vt = D∆v + g(u, v) + η, (2)

where u = u(x , y , t) and v = v(x , y , t) are unknown functions
defined on Ω× {t ≥ 0}, Ω is the strip (−∞,∞)× [0, 1] ⊂ R2,

d ,D > 0 are diffusion coefficients, η(x , y) and ζ(x , y) are smooth
functions that can be interpreted as external sources independent

of u, v .
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Boundary conditions

Ω = (−∞,∞)× [0, 1],

uy (x , y , t), v(x , y , t)|y=0,1 = 0,

u(x + 2π, y , t) = u(x , y , t), v(x + 2π, y , t) = v(x , y , t),

η, ζ are 2π-periodical in x .
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Assumptions

Suppose that
(Bi) There exist u∗ and v∗ such that

fu(u∗, v∗) = 0, fv (u∗, v∗) = 0 (3)

and

gu(u∗, v∗) 6= 0; (4)

(Bii) The critical point u∗, v∗ is non-degenerated, i.e., the Hessian
Hf of the function f at the point (u∗, v∗) defined by(

fuu(u∗, v∗) fuv (u∗, v∗)
fuv (u∗, v∗) fvv (u∗, v∗)

)
satisfies

detHf 6= 0. (5)

S. Vakulenko Symbolic dynamics, reaction-diffusion systems and morphogenesis



Parameters

Let us introduce parameter P of our initial boundary valued
problem (IBVP) as

P = {η(·, ·), ζ(·, ·), du,Dv}.
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Main Theorem

Theorem I. (S. Vakulenko, J. Dyn. Diff. Eqs. 2018) Suppose

assumptions Bi and Bii are satisfied. Then the family of the local
semiflows S t(P) generates all finite dimensional hyperbolic
dynamics (up to orbital topological equivalency) as we vary

parameters P of our IBVP.

Attractors may be chaotic. For semiflows defined by (2),(1) the
following assertion is valid: either this semiflow S t(P) is

monotone, or S t(P) can ε-realize all finite dimensional vector
fields. Moreover, conditions to f , g have transparent chemical

interpretation. They mean that the reagent v is neither an
inhibitor nor an activator for u.
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Comments

These results can be translated into biological language. Consider
external sources η(x , y) and ζ(x , y) in (2), (1) as spatial

concentrations of certain morphogens. To obtain a complicated
attractor, we need complicated functions η(x , y) and ζ(x , y). We

can thus consider those functions as carries a positional
information that permits to create a complicated spatio-temporal
structure (pattern). Moreover, in order to have a complex pattern
u(x , y , t), v(x , y , t) we need small coefficients du and Dv >> du,
i.e., one reagent should diffuse much faster than the other one.
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Comments

Under these conditions a positional information stored in functions
η, ζ can be transformed to spatio-temporal structure with a
complex large time behaviour. Our mechanism to generate

complex structures is based on two fundamental ideas: Turing’s
idea to take Dv 6= du, and the Wolpert concept of positional

information. Note that the idea to use a spatial heterogeneity was
proposed still by Turing in his seminal paper.
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Many local attractors

Assertion 1. Generic open systems defined by eqs. (2) with n ≥ 2
components define families of dynamical systems (semiflows) S t

P

enjoying the following property.
For appropriate external gradients η, ζ the corresponding system
S t
P is capable to generate 2Ma different structurally stable local
attractors (which may be periodic or even chaotic), where

Ma > Cf d
−1/4
u and Cf > 0 is a constant depending on

f , g ,Dv > 1.
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Many cell patterns

Assertion 2. For appropriate P local semiflows defined by our
IBVP. (2) are capable to realize any developmental programs by an

appropriate morphogenetic operator M. The maximal possible
number of those programs is not less than 2Mdvp with

Mdvp > C̃f d
−1/4
u .

Morphogenetic operator transforms u-patterns into cell types, i.e.
it is a map from space of smooth functions into space of strings.

The simplest example is given by French flag model.

S. Vakulenko Symbolic dynamics, reaction-diffusion systems and morphogenesis



Cell developmental program
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This picture illustrates a concept of developmental program.
Different types of the cells are shown by different colors. The top
row of the cells emerges at the last time moment tn, the previous
row appears at t = tn−1 and the bottom row arises at the initial
time t = t0.
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Chaos

To generate arbitrary strings we use chaos following C. Moore
(1991). There is a wide broad in chaos definition. Features of a

chaotic invariant set:

1. existence of infinite number of periodic trajectories

2. sensitivity with respect to initial data

3. positive Lyapunov exponents

A rigorious theory is developed for a special class of invariant sets,
so-called hyperbolic sets. They can be fractal, like to Cantor sets,

or smooth manifolds.
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Reduction

Systems, which are capable to generate all hyperbolic dynamics we
call ”maximally dynamically complex” (or dynamically universal, if
we use terminology of T. Tao). We reduce our RDS to an example

of such system is

dxi
dt

=
N∑
j=1

Wijxj − λx2i (6)

(the proof of universality see Vakulenko, Weber, Grigoriev, Studies
in Applied Mathematics, 2015). We can vary N, Wij by adjusting
parameters P of our RDS.
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Main trick

One can show that under an appropriate choice of P this system of
a large dimension N can be decomposed into Ma almost

independent shorted subsystems of dimension N/Ma of the same
form. We adjust entries Wij in such a way that each subsystem has

two local attractors. Then the complete system has 2Ma of local
attractors.
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Chaotic local attractor produces sequence of cell states in
time

Suppose if morphogen concentration u(xc , t) ∈ Uj , where Uj are
domains, and xc is a cell center, we obtain the cell of type j . Let

for simplicity j = r , b. Then, to obtain a time sequence
a(t1), ..., a(tk) of cell types a(tj) ∈ {r , b}, we should satisfy

u(xc , tj) ∈ Uj , tj = j∆T , j = 1, ..., k.

Symbolic dynamics allows to resolve this problem by Bernoulli
shifts and Markov partitions, (see C. Moore Nonlinearity, 1991,

also S. Vakulenko, D. Grigoriev, New way for cell differentiation:
Reaction, diffusion and chaotic waves, Biosystems (212), 2022).
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Outline of proof

Our relation is equivalent

u(xc , 0) ∈ S−tjUj , tj = j∆T , j = 1, ..., k.

where S t is the semiflow. If the semiflow is mixing and chaotic on
a hyperbolic set, this relation can be satisfied because

meas(A ∩ S tB)→ meas(A) meas(B) t →∞.
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French Flag model

Figure: Famous Arnold cat picture shows mixing for some torus
automorphisms.
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Conclusion

1. methods of symbolic dynamics allow us to show that any
cellular patten can be obtained by chaotic dynamics;

2. Turing mechanism + Wolpert gradients working together an
open generic chemical system can generate exponentially
many attractors and cellular patterns;

3. pattern and attractor control can be performed by gradients
and diffusion coefficients only whereas reaction part can be
fixed.
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